Low-cost lithographically patterned source/drain bottom contacts for high mobility p-type organic thin film transistors

2012 ◽  
Vol 1435 ◽  
Author(s):  
Robert Mueller ◽  
Steve Smout ◽  
Myriam Willegems ◽  
Jan Genoe ◽  
Paul Heremans

ABSTRACTShort channel organic thin film transistors in bottom-gate, bottom contact configuration use typically gold metallization for the source and drain contacts because this metal can easily be cleaned from photoresist residuals by oxygen plasma or ultraviolet-ozone and allows also surface modification by self-assembled monolayers (e.g. thiols). Alternative low-cost bottom contact metallization for high performance short-channel organic thin film transistors are scarce because of the incompatibility of the bottom contact material with the cleaning step. In this work a new process flow, involving a temporary thin aluminum protection layer, is presented. Short channel (3.4 μm) pentacene transistors with lithographical defined and thiol modified silver source/drain bottom contacts (25 nm thick, on a 2 nm titanium adhesion layer) prepared according to this process achieved a saturation mobility of 0.316 cm2/(V.s), and this at a metal cost below 1% of the standard 30 nm thick gold metallization.

2021 ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

Abstract The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f ]thieno[3,2-b]thiophene (4H-21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a record high saturation mobility of 8.8 cm2V− 1s− 1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 µm and an average carrier mobility of 10.5 cm2V-1s-1 for long channel length OTFTs (> 50 µm). The pseudo-CMOS inverter circuit with a channel length of 15 µm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 µs. The uniform and reproducible performance of 4H-21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


COSMOS ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 59-77
Author(s):  
YUNING LI ◽  
BENG S. ONG

Organic thin film transistors (OTFTs) are promising candidates as alternatives to silicon TFTs for applications where light weight, large area and flexibility are required. OTFTs have shown potential for cost effective fabrication using solution deposition techniques under mild conditions. However, two major issues must be addressed prior to the commercialization of OTFT-based electronics: (i) low charge mobilities and (ii) insufficient air stability. This article reviews recent progress in the design and development of thiophene-based polymer semiconductors as channel materials for OTFTs. To date, both high performance p-type and n-type thiophene-based polymers with benchmark charge carrier mobility of > 0.5 cm2 V-1 s-1 have been archived, which bring printed OTFTs one step closer to commercialization.


2012 ◽  
Vol 4 (12) ◽  
pp. 6992-6998 ◽  
Author(s):  
Peng-Yi Huang ◽  
Liang-Hsiang Chen ◽  
Choongik Kim ◽  
Hsiu-Chieh Chang ◽  
You-jhih Liang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

AbstractThe low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f]thieno[3,2-b]thiophene (4H–21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a high saturation mobility of 8.8 cm2 V−1 s−1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 μm and an average carrier mobility of 10.5 cm2 V−1 s−1 for long channel length OTFTs (> 50 μm). The pseudo-CMOS inverter circuit with a channel length of 15 μm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 μs. The uniform and reproducible performance of 4H–21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


Sign in / Sign up

Export Citation Format

Share Document