Composite nanosilver structures suitable for plasmonic biosensors

2012 ◽  
Vol 1416 ◽  
Author(s):  
Georgios A. Sotiriou ◽  
Christoph O. Blattmann ◽  
Sotiris E. Pratsinis

ABSTRACTSilver (Ag) nanoparticles dispersed in an amorphous silica (SiO2) matrix or coated by a SiO2 layer were synthesized by flame spray pyrolysis (FSP). The coated nanoparticles were produced by using a modified enclosed FSP setup, in which the SiO2 precursor was injected through a ring above the FSP nozzle at various burner-ring-distances (BRDs), after the core Ag nanoparticles had been formed. The produced nanoparticles were characterized by XRD, BET, TEM and UV/vis analysis. The Ag particle size was possible to be controlled by tuning the FSP parameters. For the SiO2 coated nanoparticles, larger Ag core sizes were obtained for higher BRDs. All the produced nanoparticles exhibited the characteristic plasmon resonance frequency of Ag nanoparticles.

2009 ◽  
Vol 1208 ◽  
Author(s):  
Georgios A Sotiriou ◽  
Sotiris E. Pratsinis

AbstractSilver (Ag) nanoparticles dispersed in an amorphous silica (SiO2) matrix or coated by a SiO2 layer were synthesized by flame spray pyrolysis (FSP). The coated nanoparticles were produced by using a modified enclosed FSP setup, in which the SiO2 precursor was injected through a ring above the FSP nozzle at various burner-ring-distances (BRDs), after the core Ag nanoparticles had been formed. The produced nanoparticles were characterized by XRD, BET, TEM and UV/vis analysis. The Ag particle size was possible to be controlled by tuning the FSP parameters. For the SiO2 coated nanoparticles, larger Ag core sizes were obtained for higher BRDs. All the produced nanoparticles exhibited the characteristic plasmon resonance frequency of Ag nanoparticles.


2013 ◽  
Vol 1509 ◽  
Author(s):  
Georgios A. Sotiriou ◽  
Christoph O. Blattmann ◽  
Sotiris E. Pratsinis

ABSTRACTSilver (Ag) nanoparticles dispersed in an amorphous silica (SiO2) matrix or coated by a SiO2 layer were synthesized by flame spray pyrolysis (FSP). The coated nanoparticles were produced by using a modified enclosed FSP setup, in which the SiO2 precursor was injected through a ring above the FSP nozzle at various burner-ring-distances (BRDs), after the core Ag nanoparticles had been formed. The produced nanoparticles were characterized by XRD, BET, TEM and UV/vis analysis. The Ag particle size was possible to be controlled by tuning the FSP parameters. For the SiO2 coated nanoparticles, larger Ag core sizes were obtained for higher BRDs. All the produced nanoparticles exhibited the characteristic plasmon resonance frequency of Ag nanoparticles.


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (1) ◽  
Author(s):  
Arif Jumari ◽  
Agus Purwanto ◽  
Sperisa Distantina

<p><strong><em>Abstract: </em></strong><em>Biodiesel is a very potential alternative energy resources. Producing of Biodiesel was much carried out using homogeneous catalytic esterification of vegetable oil and alcohol. These proces had many disanvantages. ZnO as a transesterification catalyst has given high yield. To improve the catalytic performance, the surface area per mas of catalyst must be increased by decreasing the size of particle. To ease the separation between product and catalyst, the magnetic  behaviour should be added to the catalyst. The aim of the research were to obtain nanocomposite ZnO/Fe<sub>2</sub>O<sub>3</sub> and determine physical characteristic as well as catalytic and separation performance. Nanocomposite ZnO/Fe<sub>2</sub>O<sub>3</sub> was synthesized by flame spray pyrolysis method. Assisted by carrier air precursor solution of Zn(NO<sub>3</sub>)<sub>2</sub> and Fe(NO<sub>3</sub>)<sub>3</sub> was nebulized and flowed to the inner tube of the burner. Nebulasation was carried out by varying carrier gas flow rate but  at constant rateof nebulization. LPG gas dan oxidant air  were flowed to the inner annulus  and outer annulus, respectively. The solid produced was separated from gas by particle filter. The solid particle was then examined by XRD , FE-SEM and BET as wel as catalytic performance. The result showed that the crystalinity of samples decreased by increasing the carrier gas flow rate. The particle size was not influenced by carrier gas flow rate and the size were dominantly between 50-100 nm. A part of particle was flowerlike particle.  The specific surface area  of particle was not inflenced by carrier gas flow rate and its value was 50.5 m<sup>2</sup>/gram.</em></p><p><em> </em><strong><em>Keywords</em></strong><em> : Tran-esterification,  nanocomposite ZnO/Fe<sub>2</sub>O<sub>3</sub>,  flame spray pyrolysis,   carrier gas, particle size,  particle morphology, specific surface area </em></p>


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (1) ◽  
Author(s):  
Agus Purwanto ◽  
Arif Jumari ◽  
Sperisa Distantina

<p><strong><em>A</em></strong><strong><em>b</em></strong><strong><em>stract</em></strong>: <em>Biodiesel is produced through catalytic esterification process of vegetable oil and alcohol. Producing of biodiesel was much carried out using homogeneous catalyst (acid/base). These process had many disanvantages: high energy consumption, side product formed and complicated separation among side product and catalyst. ZnO as transesterification catalyst has given high yield. To improve the catalytic performance, surface area per mas of catalyst must be increased by decreasing size of particle. To ease separation between product and catalyst, magnetic behaviour should be added to the catalyst. Aims of research were to obtain nanocomposite ZnO/Fe</em><em>2</em><em>O</em><em>3   </em><em>and  determine  physical characteristic as  well  as  catalytic  and separation performance of nanocomposite ZnO/Fe</em><em>2</em><em>O</em><em>3</em><em>. Nanocomposite ZnO/Fe</em><em>2</em><em>O</em><em>3  </em><em>w</em><em>a</em><em>s synthesized by flame spray pyrolysis method. Assisted by carrier air precursor solution of Zn(NO</em><em>3</em><em>)</em><em>2  </em><em>and Fe(NO</em><em>3</em><em>)</em><em>3  </em><em>w</em><em>a</em><em>s nebulized and flowed to inner tube of burner. Nebulasation was carried out by varying carrier gas flow rate but at constant rate of nebulization. LPG gas dan oxidant air were flowed to the inner annulus and outer annulus, respectively. The solid produced was separated from gas by particle filter. Solid particle obtained was then examined by X Ray Defraction (XRD), FE-SEM and BET as wel as catalytic performance. The result of the research showed that crystalinity of particles increased by increasing LPG flow rate. Particle size of ZnO/Fe</em><em>2</em><em>O</em><em>3  </em><em>nanocomposite decreased by increasing LPG flow rate and size were dominantly between  50-100  nm.  A  part  of  particle was  flowerlike particle.  Specific  surface area    of ZnO/Fe</em><em>2</em><em>O</em><em>3 </em><em>nanocomposite increased by increasing LPG flow rate and its value were between </em><em>45-55 m</em><em>2</em><em>/gram.</em></p><p> <strong><em>K</em></strong><strong><em>eywords</em></strong>: <em>Tran-esterification, nanocomposite </em>ZnO/Fe2O3<em>,  flame spray pyrolysis,   carrier gas</em>, <em>particle size, morphology of particle, specific surface area</em></p>


2021 ◽  
pp. 111426
Author(s):  
Naphaphan Kunthakudee ◽  
Pongtanawat Khemthong ◽  
Chuleeporn Luadthong ◽  
Joongjai Panpranot ◽  
Okorn Mekasuwandumrong ◽  
...  

2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


Langmuir ◽  
2021 ◽  
Author(s):  
Abhijit H. Phakatkar ◽  
Mahmoud Tamadoni Saray ◽  
Md Golam Rasul ◽  
Lioudmila V. Sorokina ◽  
Timothy G. Ritter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document