Martensitic Transformation in Submicron Cu-Al-Ni Pillar

2013 ◽  
Vol 1581 ◽  
Author(s):  
Lifeng Liu ◽  
Yumei Zhou ◽  
Lan Lv

ABSTRACTThe transformation plateau on the strain-stress curve is the characteristic of superelasticity of bulk shape memory alloys upon tension/compression loading. However, recent studies show that such transformation plateau is hard to see when the sample size of shape memory alloys decreases to submicrons. In order to see what happened in such small scale samples during loading, in-situ compression test has been done with single crystal Cu-14.2Al-4.0Ni (wt %) submicron pillars. Our in-situ observation during compression demonstrates that the stress-induced martensitic transformation indeed occurs in submicron pillars, but is not suppressed. Furthermore, the transformation proceeds in a sequential nucleation-growth-nucleation dominated mode, but not the transient way like that in bulk materials. As a result, the stress keeps increasing throughout the transformation and no obvious transformation plateau can be detected. However, the underlying reason for such contrast transformation behaviors between our submicron pillars and bulk materials still needs further investigation.

2011 ◽  
Vol 1297 ◽  
Author(s):  
Jose San Juan ◽  
Maria L. Nó ◽  
Christopher A. Schuh

ABSTRACTShape Memory Alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, exhibiting specific properties of superelasticity and shape memory. At present there is a high scientific and technological interest to develop these properties at small scale, to apply SMA as sensors and actuators in MEMS technologies. In order to study the thermo-mechanical properties of SMA at micro and nano scale, instrumented nano indentation is being widely used for nano compression tests. By using this technique, superelasticity and shape memory at the nano-scale has been demonstrated in micro and nano pillars of Cu-Al-Ni SMA. However the martensitic transformation seems to exhibit a different behavior at small scale than in bulk materials and a size effect on superelasticity has been recently reported. In the present work we will overview the thermo-mechanical properties of Cu-Al-Ni SMA at the nano-scale, with special emphasis on size effects. Finally, the above commented size effects will be discussed on the light of the microscopic mechanisms controlling the martensitic transformation at nano scale.


2017 ◽  
Vol 10 (01) ◽  
pp. 1740003 ◽  
Author(s):  
I. López-Ferreño ◽  
J. San Juan ◽  
T. Breczewski ◽  
G. A. López ◽  
M. L. Nó

Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu–Al–Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100–200[Formula: see text]C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1[Formula: see text]mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down ([Formula: see text]-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The [Formula: see text]-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200[Formula: see text][Formula: see text]m in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.


2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.


1996 ◽  
Vol 459 ◽  
Author(s):  
K. Bhattacharya ◽  
R. D. James

Shape-memory alloys have the largest energy output per unit volume per cycle of known actuator systems [1]. Unfortunately, they are temperature activated and hence, their frequency is limited in bulk specimens. However, this is overcome in thin films; and hence shape-memory alloys are ideal actuator materials in micromachines[l]. The heart of the shape-memory effect lies in a martensitic phase transformation and the resulting microstructure. It is well-known that microstructure can be significantly different in thin films as compared to bulk materials. In this paper, we report on a theory of single crystal martensitic this films. We show that single crystal films of shape memory material offer interesting possibilities for producing very large deformations, at small scales.


1999 ◽  
Vol 121 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Qing-Ping Sun ◽  
Terry Ting Xu ◽  
Xiangyang Zhang

Recent experimental results on the deformation field of single crystal CuNiAl shape memory alloys (SMA) by using Moire´ interference technique are reported and two kinds of austenite-martensite (A-M) interfaces with different deformation features are identified. The experimental discovery questioned the invariant plane hypothesis used in crystallographic theory of martensitic transformation. Some fundamental issues on the property of A-M interface and the related micro- and macro-deformation features are discussed.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-973-C8-978
Author(s):  
M. Jurado ◽  
Ll. Mañosa ◽  
A. González-Comas ◽  
C. Stassis ◽  
A. Planes

Sign in / Sign up

Export Citation Format

Share Document