A Novel Injectable Chitosan Sponge Containing Brain Derived Neurotrophic Factor (BDNF) to Enhance Human Oligodendrocyte Progenitor Cells' (OPC) Differentiation

2014 ◽  
Vol 1621 ◽  
pp. 127-132
Author(s):  
Mina Mekhail ◽  
Qiao-Ling Cui ◽  
Guillermina Almazan ◽  
Jack Antel ◽  
Maryam Tabrizian

ABSTRACTWe developed a rapidly-gelling chitosan sponge crosslinked with Guanosine 5'-Diphosphate (GDP). GDP has not been previously explored as an anionic crosslinker, and it was used in this application since the nucleoside guanosine has been shown to improve remyelination in situ, and thus its presence in the sponge composition was hypothesized to induce Oligodendrocyte Progenitor Cells' (OPC) differentiation. In addition to the chemical composition tailored to target OPCs, the developed chitosan sponge possesses a wide range of desirable physicochemical properties such as: rapid gelation, high porosity with interconnected pores, moduli of elasticity resembling that of soft tissue and cytocompatibility with many cell types. Moreover, protein encapsulation into the sponges was possible with high encapsulation efficiencies (e.g. BMP-7 and NT-3). In this study, BDNF was encapsulated in the chitosan sponges with an encapsulation efficiency greater than 80% and a sustained release over a 16-day period was achieved. We demonstrate here for the first time, the attachment of human fetal OPCs to the sponges and their differentiation after 12 days of culture. Overall, this newly-introduced injectable sponge is a promising therapeutic modality that can be used to enhance remyelination post-spinal cord injuries.

Author(s):  
Norihisa Bizen ◽  
Asim K. Bepari ◽  
Li Zhou ◽  
Manabu Abe ◽  
Kenji Sakimura ◽  
...  

AbstractOlig2 is indispensable for motoneuron and oligodendrocyte fate-specification in the pMN domain of embryonic spinal cords, and also involved in the proliferation and differentiation of several cell types in the nervous system, including neural progenitor cells (NPCs) and oligodendrocytes. However, how Olig2 controls these diverse biological processes remains unclear. Here, we demonstrated that a novel Olig2-binding protein, DEAD-box helicase 20 (Ddx20), is indispensable for the survival of NPCs and oligodendrocyte progenitor cells (OPCs). A central nervous system (CNS)-specific Ddx20 conditional knockout (cKO) demonstrated apoptosis and cell cycle arrest in NPCs and OPCs, through the potentiation of the p53 pathway in DNA damage-dependent and independent manners, including SMN complex disruption and the abnormal splicing of Mdm2 mRNA. Analyzes of Olig2 null NPCs showed that Olig2 contributed to NPC proliferation through Ddx20 protein stabilization. Our findings provide novel mechanisms underlying the Olig2-mediated proliferation of NPCs, via the Ddx20-p53 axis, in the embryonic CNS.


Glia ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 1291-1303 ◽  
Author(s):  
Kelly Perlman ◽  
Charles P. Couturier ◽  
Moein Yaqubi ◽  
Arnaud Tanti ◽  
Qiao‐Ling Cui ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Patrick Happel ◽  
Kerstin Möller ◽  
Nina K. Schwering ◽  
Irmgard D. Dietzel

2013 ◽  
Vol 74 (4) ◽  
pp. 1011-1021 ◽  
Author(s):  
Yujie Huang ◽  
Caitlin Hoffman ◽  
Prajwal Rajappa ◽  
Joon-Hyung Kim ◽  
Wenhuo Hu ◽  
...  

2018 ◽  
Vol 38 (43) ◽  
pp. 9142-9159 ◽  
Author(s):  
Veronica T. Cheli ◽  
Diara A. Santiago González ◽  
Leandro N. Marziali ◽  
Norma N. Zamora ◽  
María E. Guitart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document