Sn-based Group-IV Semiconductors on Si: New Infrared Materials and New Templates for Mismatched Epitaxy

2005 ◽  
Vol 891 ◽  
Author(s):  
John Tolle ◽  
Radek Roucka ◽  
Vijay D'Costa ◽  
Jose Menendez ◽  
Andrew Chizmeshya ◽  
...  

ABSTRACTWe report growth and properties of GeSn and SiGeSn alloys on Si (100). These materials are prepared using a novel CVD approach based on reactions of Si-Ge hydrides and SnD4. High quality GeSn films with Sn contents up to 20%, and strain free microstructures have been obtained. The lattice mismatch between the films and Si is relieved by Lomer edge dislocations located at the interface. This material is of interest due to the predicted cross-over to a direct gap semiconductor for moderate Sn concentrations. We find that the direct band gap, and, consequently, the main absorption edge, shifts monotonically to lower energies as the Sn concentration is increased. The compositional dependence of the direct band gap shows a strong bowing, such that the direct band gap is reduced to 0.4 eV (from 0.8 eV for pure Ge) for a concentration of 14% Sn. The ternary SiGeSn alloy has been grown for the first time on GeSn buffer layers. This material opens up entirely new opportunities for strain and band gap engineering using group-IV materials via decoupling of strain and composition. Our SiGeSn layers have lattice constants above and below that of pure Ge, and depending on the thickness and composition of the underlying buffer layer they can be grown relaxed, with compressive, or with tensile strain. In addition to acting as a buffer layer for the growth of SiGeSn, we have found that GeSn can act as a template for the subsequent growth of a variety of materials, including III-V semiconductors.

2015 ◽  
Vol 17 (33) ◽  
pp. 21605-21610 ◽  
Author(s):  
Zhen Zhu ◽  
Jiamin Xiao ◽  
Haibin Sun ◽  
Yue Hu ◽  
Ronggen Cao ◽  
...  

Obtaining the value of the band gap and the composition of an indirect–direct band gap transition point for group-IV semiconductor alloys by an efficient and reliable method.


2019 ◽  
Vol 92 ◽  
pp. 39-46 ◽  
Author(s):  
Tuan T. Tran ◽  
Jay Mathews ◽  
J.S. Williams

2014 ◽  
Vol 1666 ◽  
Author(s):  
John Kouvetakis ◽  
James Gallagher ◽  
José Menéndez

ABSTRACTThis paper presents synthesis and optical properties of mono-crystalline Ge1-ySny and Ge1-x-ySixSny semiconductor alloys grown on Si/Ge platforms via purposely designed CVD routes using highly reactive Si/Ge/Sn hydrides including Ge3H8, Ge4H10, Si4H10 and SnD4. The Ge1-ySny materials are shown to exhibit strong and tunable photoluminescence induced by the substitution of sizable Sn concentrations in the Ge diamond lattice ultimately leading to an indirect-to-direct band gap crossover at y= 0.08-0.09. The optical data indicate that the IR coverage of the alloy extends well beyond that of elemental Ge into the broader long wavelength range suggesting a variety of applications in Si-based photonics. Ge1-x-ySixSny alloys represent the first viable ternary semiconductor among group IV elements with independently tunable lattice parameter and electronic structure. Studies of the compositional dependence of direct and indirect edges in these alloys using photoluminescence and photocurrent measurements are reviewed. The optical results show band gap variation over a wide range above and below that of Ge from 1.1 to 0.5 eV and provide the first demonstration of direct gap behavior in this semiconductor system.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


Sign in / Sign up

Export Citation Format

Share Document