Comparison of the Electroluminescence of Blue and Deep-UV Light-Emitting Diodes at Elevated Temperatures

2005 ◽  
Vol 892 ◽  
Author(s):  
Xian-An Cao ◽  
T. Stecher ◽  
S. LeBoeuf

AbstractThe performance of InGaN and AlGaN-based blue (465nm) and deep ultraviolet (UV) (280 nm) light-emitting diodes (LEDs) at elevated temperatures (25-175 °C) were investigated. As a result of uniform high-Al content AlGaN alloys yielded by migration-enhanced metalorganic chemical vapor deposition, the deep-UV LED showed dominant band-edge emission, much smaller alloy broadening and weaker localization effects as compared to the InGaN LED. Strong carrier localization was retained in the blue LED up to 175 °C, leading to temperature-independent emission intensity at low-energy tails. The UV LED, however, showed a much more rapid decrease in light output with increasing temperature. The characteristic temperature was 37 K, compared to 270 K for the blue LED. These findings implicate the lack of localization effects in AlGaN alloys as one of the causal factors in the poor thermal performance of the deep UV LED and suggest that increasing carrier confining potentials will provide a critical means to improve its thermal stability.

2015 ◽  
Vol 8 (1) ◽  
pp. 905-934
Author(s):  
N. D. Rider ◽  
Y. M. Taha ◽  
C. A. Odame-Ankrah ◽  
J. A. Huo ◽  
T. W. Tokarek ◽  
...  

Abstract. Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 203 ◽  
Author(s):  
Jie Zhao ◽  
Xinghuo Ding ◽  
Jiahao Miao ◽  
Jinfeng Hu ◽  
Hui Wan ◽  
...  

A patterned double-layer indium-tin oxide (ITO), including the first unpatterned ITO layer serving as current spreading and the second patterned ITO layer serving as light extracting, was applied to obtain uniform current spreading and high light extraction efficiency (LEE) of GaN-based ultraviolet (UV) light-emitting diodes (LEDs). Periodic pinhole patterns were formed on the second ITO layer by laser direct writing to increase the LEE of UV LED. Effects of interval of pinhole patterns on optical and electrical properties of UV LED with patterned double-layer ITO were studied by numerical simulations and experimental investigations. Due to scattering out of waveguided light trapped inside the GaN film, LEE of UV LED with patterned double-layer ITO was improved as compared to UV LED with planar double-layer ITO. As interval of pinhole patterns decreased, the light output power (LOP) of UV LED with patterned double-layer ITO increased. In addition, UV LED with patterned double-layer ITO exhibited a slight degradation of current spreading as compared to the UV LED with a planar double-layer ITO. The forward voltage of UV LED with patterned double-layer ITO increased as the interval of pinhole patterns decreased.


2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


2021 ◽  
Vol 118 (23) ◽  
pp. 231102
Author(s):  
Youn Joon Sung ◽  
Dong-Woo Kim ◽  
Geun Young Yeom ◽  
Kyu Sang Kim

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 399
Author(s):  
Sang-Jo Kim ◽  
Semi Oh ◽  
Kwang-Jae Lee ◽  
Sohyeon Kim ◽  
Kyoung-Kook Kim

We demonstrate the highly efficient, GaN-based, multiple-quantum-well light-emitting diodes (LEDs) grown on Si (111) substrates embedded with the AlN buffer layer using NH3 growth interruption. Analysis of the materials by the X-ray diffraction omega scan and transmission electron microscopy revealed a remarkable improvement in the crystalline quality of the GaN layer with the AlN buffer layer using NH3 growth interruption. This improvement originated from the decreased dislocation densities and coalescence-related defects of the GaN layer that arose from the increased Al migration time. The photoluminescence peak positions and Raman spectra indicate that the internal tensile strain of the GaN layer is effectively relaxed without generating cracks. The LEDs embedded with an AlN buffer layer using NH3 growth interruption at 300 mA exhibited 40.9% higher light output power than that of the reference LED embedded with the AlN buffer layer without NH3 growth interruption. These high performances are attributed to an increased radiative recombination rate owing to the low defect density and strain relaxation in the GaN epilayer.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26415-26420
Author(s):  
Yue Yao ◽  
Si-Wei Zhang ◽  
Zijian Liu ◽  
Chun-Yun Wang ◽  
Ping Liu ◽  
...  

A Bi3+-doped Cs2SnCl6 exhibits photoluminescence at around 456 nm and a photoluminescence quantum yield of 31%. The blue LED based on the Bi3+-doped Cs2SnCl6 phosphor exhibits a long life of 120 hours and a CIE color coordinates of (0.14, 0.11).


2009 ◽  
Vol 30 (11) ◽  
pp. 1152-1154 ◽  
Author(s):  
Hung-Wen Huang ◽  
Chung-Hsiang Lin ◽  
Zhi-Kai Huang ◽  
Kang-Yuan Lee ◽  
Chang-Chin Yu ◽  
...  

2007 ◽  
Vol 46 (No. 23) ◽  
pp. L537-L539 ◽  
Author(s):  
Vinod Adivarahan ◽  
Qhalid Fareed ◽  
Surendra Srivastava ◽  
Thomas Katona ◽  
Mikhail Gaevski ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1178 ◽  
Author(s):  
Qiang Zhao ◽  
Jiahao Miao ◽  
Shengjun Zhou ◽  
Chengqun Gui ◽  
Bin Tang ◽  
...  

We demonstrate high-power GaN-based vertical light-emitting diodes (LEDs) (VLEDs) on a 4-inch silicon substrate and flip-chip LEDs on a sapphire substrate. The GaN-based VLEDs were transferred onto the silicon substrate by using the Au–In eutectic bonding technique in combination with the laser lift-off (LLO) process. The silicon substrate with high thermal conductivity can provide a satisfactory path for heat dissipation of VLEDs. The nitrogen polar n-GaN surface was textured by KOH solution, which not only improved light extract efficiency (LEE) but also broke down Fabry–Pérot interference in VLEDs. As a result, a near Lambertian emission pattern was obtained in a VLED. To improve current spreading, the ring-shaped n-electrode was uniformly distributed over the entire VLED. Our combined numerical and experimental results revealed that the VLED exhibited superior heat dissipation and current spreading performance over a flip-chip LED (FCLED). As a result, under 350 mA injection current, the forward voltage of the VLED was 0.36 V lower than that of the FCLED, while the light output power (LOP) of the VLED was 3.7% higher than that of the FCLED. The LOP of the FCLED saturated at 1280 mA, but the light output saturation did not appear in the VLED.


2010 ◽  
Vol 107 (1) ◽  
pp. 013103 ◽  
Author(s):  
Zheng Gong ◽  
Shirong Jin ◽  
Yujie Chen ◽  
Jonathan McKendry ◽  
David Massoubre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document