High-Resolution X-ray Topography of Dislocations in 4H-SiC Epilayers

2006 ◽  
Vol 911 ◽  
Author(s):  
Isaho Kamata ◽  
Hidekazu Tsuchida ◽  
William M Vetter ◽  
Michael Dudley

AbstractSilicon carbide (SiC) substrates and epilayers contain many crystal defects, such as micropipes, screw dislocations, threading edge dislocations (TEDs), basal plane dislocations (BPDs) and stacking faults. To investigate these defects, synchrotron radiation topography is frequently carried out. When the monochromatic synchrotron X-ray topography is taken by the grazing-incidence reflection geometry using 11-28 reflection, screw dislocations, TEDs and BPDs are simultaneously seen and shown as different topographic images [1]. Many studies of dislocations were reported using 11-28 reflections in 4H-SiC [1,2]. Topographic images of the dislocations have been analyzed by the ray-tracing method of computer simulation [3]. However, experimental images of dislocations were not fully matched to the fine structure of simulation images, because of a lack of resolution in recording media: conventional films and nuclear emulsion plates [3]. This time, we report obtaining high-resolution topographic images using a new recording medium, and compare results between the experiment and the computer simulation. Synchrotron topography in 11-28 reflection was carried out at SPring8 applying holography films as high-resolution recording media. The TED images are distinguished as four types, which have ribbon-like features with different rotating angles, through the use of the films. The four different TED images agree well with the computer simulated images which have been reported by Vetter et.al. taking into account of the different Burgers vector directions [3]. By comparing the three topographic images taken at g=-12-18, 11-28 and 2-1-18, we confirmed experimentally that the four types of TED images originated from the difference of Burgers vector directions. We also investigated high-resolution topographic images of elementary screw dislocations, micropipes, and BPDs in 4H-SiC epilayers. The experimental image of screw dislocation fairly matched with simulated image. The fine features in the experimental topographic images of micropipes and BPDs are also compared with the simulated images in detail. [1] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, K. Arai: J. cryst. Growth. Vol. 260 (2004) 209. [2] H. Tsuchida, T. Miyanagi, I. Kamata, T. Nakamura, R. Ishii, K. Nakayama and Y.Sugawara: Jpn. J. Appl. Phys. Vol. 25, (2005), L806-808. [3] W. Vetter, H. Tsuchida, I. Kamata, M. Dudley: J. Appl. Cryst. Vol. 38, (2005), 442-447.

2007 ◽  
Vol 22 (4) ◽  
pp. 845-849 ◽  
Author(s):  
Isaho Kamata ◽  
Hidekazu Tsuchida ◽  
William M. Vetter ◽  
Michael Dudley

Synchrotron x-ray topography with a high-resolution setup using 1128 reflection was carried out on 4H-SiC epilayers. Four different shapes of threading-edge dislocation according to Burgers vector direction were observed. The four types of threading-edge dislocation images were calculated by computer simulation, and the experimental results correlated well with the simulation results. The detailed topographic features generated by plural screw dislocations and basal plane dislocations were also investigated.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Yi Chen ◽  
Xianrong Huang ◽  
Ning Zhang ◽  
Govindhan Dhanaraj ◽  
Edward Sanchez ◽  
...  

ABSTRACTIn our study, closed-core threading screw dislocations and micropipes were studied using synchrotron x-ray topography of various geometries. The Burgers vector magnitude of TSDs can be quantitatively determined from their dimensions in back-reflection x-ray topography, based on ray-tracing simulation and this has been verified by the images of elementary TSDs. Dislocation senses of closed-core threading screw dislocations and micropipes can be revealed by grazing-incidence x-ray topography. The threading screw dislocations can be converted into Frank partial dislocations on the basal planes and this has been confirmed by transmission synchrotron x-ray topography.


2012 ◽  
Vol 1433 ◽  
Author(s):  
Fangzhen Wu ◽  
Shayan Byrappa ◽  
Huanhuan Wang ◽  
Yi Chen ◽  
Balaji Raghothamachar ◽  
...  

ABSTRACTSynchrotron X-ray topography (SXRT) of various geometries has been successfully utilized to image c+a dislocations in 4H-SiC crystals. Although molten potassium hydroxide(KOH) can be used to reveal the location of such dislocations, it is not possible to determine their senses or their Burgers vector magnitude. A simple, non-destructive method has been proposed to determine the Burgers vector of these c+a dislocations called the ray tracing simulation, which has been successfully implemented previously in revealing the dislocation sense and magnitude of micropipes, closed-core threading screw dislocations (TSDs) and threading edge dislocations (TEDs) in 4H-SiC. In this paper, grazing incidence topography is performed using the monochromatic beam for the horizontally cut wafers to record pyramidal reflections of 11-28 type. Ray tracing simulation has been successfully implemented to correlate the simulated images with experimental images which are discussed in the paper.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


2000 ◽  
Vol 5 (S1) ◽  
pp. 97-103
Author(s):  
Kathleen A. Dunn ◽  
Susan E. Babcock ◽  
Donald S. Stone ◽  
Richard J. Matyi ◽  
Ling Zhang ◽  
...  

Diffraction-contrast TEM, focused probe electron diffraction, and high-resolution X-ray diffraction were used to characterize the dislocation arrangements in a 16µm thick coalesced GaN film grown by MOVPE LEO. As is commonly observed, the threading dislocations that are duplicated from the template above the window bend toward (0001). At the coalescence plane they bend back to lie along [0001] and thread to the surface. In addition, three other sets of dislocations were observed. The first set consists of a wall of parallel dislocations lying in the coalescence plane and nearly parallel to the substrate, with Burgers vector (b) in the (0001) plane. The second set is comprised of rectangular loops with b = 1/3 [110] (perpendicular to the coalescence boundary) which originate in the coalescence boundary and extend laterally into the film on the (100). The third set of dislocations threads laterally through the film along the [100] bar axis with 1/3<110>-type Burgers vectors These sets result in a dislocation density of ∼109 cm−2. High resolution X-ray reciprocal space maps indicate wing tilt of ∼0.5º.


2008 ◽  
Vol 600-603 ◽  
pp. 267-272 ◽  
Author(s):  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
Masahiro Nagano

Defect formation in 4H-SiC(0001) and (000-1) epitaxy is investigated by grazing incidence synchrotron reflection X-ray topography and transmission electron microscopy. Frank-type faults, which are terminated by four Frank partials with a 1/4[0001] type Burgers vector with the same sign on four different basal planes, are confirmed to be formed by conversion of a 1c threading edge dislocation (TSD) in the substrate as well as simultaneous generation of a 1c TSD during epitaxy. The collation between the topography appearance and the microscopic structure and the variety of Frank faults are shown. Formation of carrot defects and threading dislocation clusters are also investigated.


1997 ◽  
Vol 483 ◽  
Author(s):  
P. G. Neudeck ◽  
W. Huang ◽  
M. Dudley

AbstractIt is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector > 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = Ic with no hollow core) in densities on the order of thousands per cm2, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p+n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p+n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.


2001 ◽  
Vol 7 (S2) ◽  
pp. 244-245
Author(s):  
G.H. Campbell ◽  
W.E. King ◽  
J.M. Plitzko ◽  
J. Belak ◽  
S.M. Foiles

The technique of high-resolution transmission electron microscopy (HREM) produces images that contain information about the atomic structure of the specimen. Within additional, very stringent, constraints, the HREM image can contain information about atomic structure of crystal defects, including grain boundaries and interfaces. to extract this information from the image it is necessary to compare the experimental image with a simulated image calculated based upon an atomic model of the specimen.2 in this comparison, investigators have been aided by the use of quantitative techniques.Atomistic simulations are often used to predict the atomic structure of crystal defects or to simulate the evolution of dynamic processes in crystals, e.g. radiation effects or dislocation motion and interaction. During the development of new models of interatomic interactions, the predictions of simulations are tested against experimental observations to validate new potentials. Grain boundary structure is a good test because atoms residing in the boundary experience environments (interatomic distances and angles) that are significantly different from those experienced by atoms residing in a perfect crystal lattice site.


Sign in / Sign up

Export Citation Format

Share Document