Study of Defects in p-type Layers in III-nitride Laser Diode Structures Grown by Molecular Beam Epitaxy

2006 ◽  
Vol 955 ◽  
Author(s):  
Huixin Xiu ◽  
Pedro MFJ Costa ◽  
Matthias Kauer ◽  
Tim M Smeeton ◽  
Stewart E Hooper ◽  
...  

ABSTRACTThis paper reports on the study of defects in p-type layers in III-nitride laser structures grown by molecular beam epitaxy. Characterization of the heterostructures was carried out using atomic force microscopy and transmission electron microscopy. The results show that a high density of extended defects – possibly inversion domains – exist in the p-type cladding layers of as-grown structures with either AlGaN/GaN superlattices or bulk AlGaN cladding layers. TEM analysis of operated and aged devices does not reveal any significant structural modification of the p-type material which might be the cause of deterioration in the lasing performance or failure.

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


1994 ◽  
Vol 340 ◽  
Author(s):  
Art J. Nelson ◽  
M. Bode ◽  
G. Horner ◽  
K. Sinha ◽  
John Moreland

ABSTRACTEpitaxial growth of the ordered vacancy compound (OVC) CuIn3Se5 has been achieved on GaAs (100) by molecular beam epitaxy (MBE) from Cu2Se and In2Se3 sources. Electron probe microanalysis and X-ray diffraction have confirmed the composition for the 1-3-5 OVC phase and that the film is single crystal Culn3Se5 (100). Transmission electron microscopy (TEM) characterization of the material also showed it to be single crystalline. Structural defects in the layer consisted mainly of stacking faults. Photoluminescence (PL) measurements performed at 7.5 K indicate that the bandgap is 1.28 eV. Raman spectra reveal a strong polarized peak at 152 cm−1, which is believed to arise from the totally symmetric vibration of the Se atoms in the lattice. Atomic force microscopy reveals faceting in a preferred (100) orientation.


2015 ◽  
Vol 1792 ◽  
Author(s):  
Mourad Benamara ◽  
Yuriy I. Mazur ◽  
Peter Lytvyn ◽  
Morgan E. Ware ◽  
Vitaliy Dorogan ◽  
...  

ABSTRACTThe influence of the substrate temperature on the morphology and ordering of InGaAs quantum dots (QD), grown on GaAs (001) wafers by Molecular Beam Epitaxy (MBE) under As2 flux has been studied using Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Photoluminescence (PL) measurements. The experimental results show that lateral and vertical orderings occur for temperatures greater than 520°C and that QDs self-organize in a 6-fold symmetry network on (001) surface for T=555°C. Vertical orderings of asymmetric QDs, along directions a few degrees off [001], are observed on a large scale and their formation is discussed.


2D Materials ◽  
2021 ◽  
Author(s):  
Frédéric Bonell ◽  
Alain Marty ◽  
Céline Vergnaud ◽  
Vincent Consonni ◽  
Hanako Okuno ◽  
...  

Abstract PtSe2 is attracting considerable attention as a high mobility two-dimensional material with envisioned applications in microelectronics, photodetection and spintronics. The growth of high quality PtSe2 on insulating substrates with wafer-scale uniformity is a prerequisite for electronic transport investigations and practical use in devices. Here, we report the growth of highly oriented few-layers PtSe2 on ZnO(0001) by molecular beam epitaxy. The crystalline structure of the films is characterized with electron and X-ray diffraction, atomic force microscopy and transmission electron microscopy. The comparison with PtSe2 layers grown on graphene, sapphire, mica, SiO2 and Pt(111) shows that among insulating substrates, ZnO(0001) yields films of superior structural quality. Hall measurements performed on epitaxial ZnO/PtSe2 with 5 monolayers of PtSe2 show a clear semiconducting behaviour and a high mobility in excess of 200 cm2V-1s-1 at room temperature and up to 447 cm2V-1s-1 at low temperature.


2001 ◽  
Vol 693 ◽  
Author(s):  
F. Fedler ◽  
J. Stemmer ◽  
R. J. Hauenstein ◽  
T. Rotter ◽  
A. M. Sanchez ◽  
...  

AbstractWurtzite GaN samples containing one, three and five 4nm thick high temperature (HT) AlN Interlayers (IL) have been grown on (0001) sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). N-polar as well as Ga-polar thin films have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and electrical measurements.All samples under consideration show excellent AFM rms surface roughness below 1nm. Previously, we published a reduction of the threading dislocation (TD) density by a factor of seven due to the introduction of one AlN-IL. When introducing multiple AlN-IL a reduction by a factor of 5.2 is achieved.Hall measurements show a rise in electron mobility due to possible 2DEG formation at the interface between GaN and the AlN-ILs. Significant growth mode differences between Ga-polar and N-polar samples result in drastically higher electron mobility values for N-polar material. For N-polar samples the exceptional mobility increase from 68 (no AlN-IL) to 707 cm2/Vs (one AlN-IL) as well as the extremely low intrinsic carrier density of 1 x 1017 cm-3 prove the applicability of AlN barriers in inverted FET devices.


1999 ◽  
Vol 606 ◽  
Author(s):  
Feng Niu ◽  
Brent.H. Hoerman ◽  
Bruce.W. Wessels

AbstractMgO thin films were deposited on (100) Si substrates by metal-organic molecular beam epitaxy (MOMBE). Magnesium acetylacetonate was used as the precursor and an oxygen RF plasma was used as the oxidant. The films were characterized by a combination of transmission electron microscopy, Auger spectrometry and atomic force microscopy. Analyses indicate that the films directly deposited on Si substrates are stoichiometric, phase-pure, polycrystalline MgO with a [100] texture. Carbon contamination of the films resulting from precursor decomposition was not observed within detection limits. Furthermore, the growth rate of MgO has been systematically investigated as a function of growth temperature.


Author(s):  
R. Armitage ◽  
Qing Yang ◽  
Eicke R. Weber

Non-polar a-plane GaN films doped with Si or Mg were grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrates. The (110) orientation of the GaN epilayers was confirmed by x-ray diffraction. The layers were further characterized by atomic force microscopy, Hall effect, and photoluminescence measurements. The Mg-doped layers showed p-type conductivity, with a maximum hole concentration of 6×1017 cm−3 (μ = 2 cm2/Vs). Comparison with Mg-doping of N-polar c-plane GaN suggests the Mg sticking coefficient may be higher on the GaN (110) surface compared to the GaN (000) surface. The electron mobility obtained for a-plane GaN:Si (18 cm2/Vs for n = 1×1018 cm−3) was low compared to that of typical c-plane epilayers. The lower electron mobility is attributed to the higher density of structural defects in a-plane GaN.


2003 ◽  
Vol 798 ◽  
Author(s):  
L. He ◽  
J. Xie ◽  
F. Yun ◽  
A. A. Baski ◽  
H. Morkoç

ABSTRACTThe growth of high-quality GaN by plasma assisted molecular beam epitaxy (MBE) is challenging, in part due to the constraint of heteroepitaxy since GaN substrates are not yet commercially available and isotropic nature of growth. Despite the large lattice and thermal mismatch between sapphire and GaN, the former is still the most commonly used substrate for the GaN-based optical devices at present. In this paper, we demonstrate a re-growth technique to obtain an improved quality GaN by MBE on GaN template on sapphire where the grossly defective regions have been removed. This GaN template is formed by MBE growth of GaN followed by wet chemical etching to selectively remove the defective region. Improved quality GaN was re-grown on such a template under Ga rich conditions to a thickness of about 1 micron. After re-growth, the surface of GaN is atomically smooth with spiral features in the short range. The low temperature PL of the re-grown GaN is superior to those of MBE GaN films directly on sapphire. Atomic force microscopy (AFM) images reveal a two-dimensional re-growth initiating in regions free of extended defects. The results show that the selectively etched GaN on sapphire can be used as a good template to improve the quality of GaN.


Sign in / Sign up

Export Citation Format

Share Document