Modeling Evaporation Driven Self-Assembly Systems for Magnetic Storage Arrays

2006 ◽  
Vol 961 ◽  
Author(s):  
John Dyreby ◽  
Greg F. Nellis ◽  
Kevin T. Turner

ABSTRACTA modeling methodology based on computational fluid dynamics (CFD) has been developed that is appropriate for the global regime of lithographically directed, evaporation driven self-assembly. The modeling technique has been experimentally verified through comparison with the well-known benchmark case of evaporation driven self-assembly associated with the evaporation of a colloidal, self-pinned droplet. The predicted evolution of the particle distribution during evaporation is compared to optical experimental measurements of the particle distribution within an evaporating droplet containing fluorescing nanoparticles.

Ocean Science ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 855-866 ◽  
Author(s):  
N. O'Sullivan ◽  
S. Landwehr ◽  
B. Ward

Abstract. Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD) to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.


Author(s):  
M. H. Al-Hajeri

This paper reports a computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Particles ranging from 1 to 100 microns are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity affect to the particles with various inlet velocities and pressure drop are both considered.


Author(s):  
G. I. Tolstov ◽  
◽  
I. A. Medvedkov ◽  
D. P. Porfiriev ◽  
M. V. Zagidullin ◽  
...  

Quantum chemical calculations, computational fluid dynamics (CFD) simulations, and isothermal approximation were applied for the interpretation of experimental measurements of the reaction of С6Н5 + O2 in the high-temperature microreactor and of the pressure drop in the flow tube of the reactor.


2018 ◽  
Author(s):  
Pietro D. Tomaselli ◽  
Ankit Aggarwal ◽  
Erik Damgaard Christensen ◽  
Hans Bihs

The design of new offshore structures requires the calculation of the wave-induced loads. In this regard, the Computational Fluid Dynamics (CFD) methodology has shown to be a reliable tool, in the case of breaking waves especially. In this paper, two CFD models are tested in the reproduction of an experimental spilling wave impacting a circular cylinder. The numerical results from the models are shown together with the experimental measurements.


2013 ◽  
Vol 68 (7) ◽  
pp. 1574-1581 ◽  
Author(s):  
Vivien Schmitt ◽  
Matthieu Dufresne ◽  
Jose Vazquez ◽  
Martin Fischer ◽  
Antoine Morin

This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.


Sign in / Sign up

Export Citation Format

Share Document