Effect of Water on the IR Properties of Mg2+ Intercalated Electrochromic Nb2O5 Thin Films

2006 ◽  
Vol 972 ◽  
Author(s):  
Gargi Agarwal ◽  
G B Reddy

AbstractSol-gel derived Nb2O5 thin films were intercalated with Mg2+,using the non-aqueous solution of Mg(ClO4)2 in propylene carbonate (pc) as the electrolyte. 2% and 4% ( volume %) water was added to the electrolyte to study the effect of water on the electrochromic properties of Nb2O5. This paper presents the changes in optical and structural properties of the intercalated films with and without water in the electrolyte. The ratio (x) of the Mg2+ and Nb atoms has been controlled by optimizing the intercalation duration under a constant current density. The fall in transmittance on intercalation (for x= 0.8) increased by 15% with 4% water in the electrolyte, compared to the film intercalated without water. FTIR studies show that water is incorporated in the films on intercalation and small quantities of Mg(OH)2 and Nb-OH are formed along with Mg-O-Nb bonds. The presence of water in electrolyte decreases water content in the films and enhances the formation of Mg(OH)2, Mg-O-Nb and Nb-OH bonds. The recovery of Mg2+ on deintercalation is slightly reduced in presence of water in the electrolyte. The cyclic stability of the films intercalated without water is more than that of the films intercalated in presence of water.

2013 ◽  
Vol 537 ◽  
pp. 256-260
Author(s):  
Cai Ge Gu ◽  
Qian Gang Fu ◽  
He Jun Li ◽  
Jin Hua Lu ◽  
Lei Lei Zhang

Bioactive calcium phosphate coatings were deposited on carbon/carbon(C/C) composites using electrochemical deposition technique. The effects of electrolyte concentration and constant current density on morphology, structure and composition of the coating were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results show that, the coating weight elevated gradually with the increase of electrolyte concentration, and the morphology of coatings changed from spherical particles to nanolamellar crystals with interlocking structure initially. Then the coating transformed into seaweed-like and nano/micro-sized crystals along the depth direction of the coating. The coatings showed seaweed-like morphology as the deposition current density was less than 20mA. With the less current density, the coating became more homogenous. However, the coating was fiakiness crysal, with needlike crystal stacked upside as the current density reached to 20mA/cm2. The coating weight was improved gradually when the current density increased from 2.5mA/cm2 to 10mA/cm2, then reduced with the increasing current density in the range of 10 to 20mA/cm2.


2014 ◽  
Vol 703 ◽  
pp. 51-55
Author(s):  
Jia Zeng ◽  
Ming Hua Tang ◽  
Zhen Hua Tang ◽  
Yong Guang Xiao ◽  
Long Peng ◽  
...  

Bi0.94Ce0.06Fe0.97Ti0.03O3 and Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films were fabricated via sol-gel process on Pt/Ti/SiO2/Si substrates. The influence of Bi3.15Nd0.85Ti3O12 buffer layer on microstructure and electrical properties of Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films were investigated in detail. Well-saturated P-E hysteresis loops can be obtained in Bi0.94Ce0.06Fe0.97Ti0.03O3 films with Bi3.15Nd0.85Ti3O12 buffer. The remnant polarization (2Pr) of the double-layered thin films is 112 μC/cm2. The coercive field (2Ec) of double-layered films is 672 kV/cm, which is much lower than that of the Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films. The leakage current density of Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films is 4.12×10-5 A/cm2.


2012 ◽  
Vol 507 ◽  
pp. 73-77 ◽  
Author(s):  
Mario Borlaf ◽  
Maria Teresa Colomer ◽  
Howard Titzel ◽  
James H. Dickerson ◽  
Rodrigo Moreno

Colloidal sol-gel is a common method used for the preparation of stable and homogeneous sols and thin films. The nanoparticulate sols can be easily deposited by EPD, which is a versatile technique for producing denser and thicker coatings than those produced by other techniques like dipping. A complete characterization of the sols, such as colloidal stability and electrophoretic mobility, which can be determined through zeta potential measurements, as well as the influence of deflocculants in the surface properties, is needed before using electrophoretic deposition. In this work, we have prepared sols of TiO2with an alkoxide:water molar ratio of 50:1 and Eu (III) doped-TiO2(2 mole % Eu (III)) using as precursors titanium (IV) isopropoxide and europium (III) acetate hydrate, respectively. The stability of the particulate sols was studied in terms of conductivity, zeta potential and viscosity evolution. Anatase stable sols, after peptization and without the use of any additive, were deposited on stainless steel substrates by electrophoretic deposition under both constant current and constant voltage conditions. Using different intensities and deposition times we have obtained thin films with different features (thicknesses and morphology) and different optical properties. The presence of europium (III) increases particle size, viscosity and peptization time and decreases the band gap of TiO2.


2014 ◽  
Vol 556 ◽  
pp. 168-173 ◽  
Author(s):  
Julia B. Nehmann ◽  
Nicole Ehrmann ◽  
Rolf Reineke-Koch ◽  
Detlef W. Bahnemann

2014 ◽  
Vol 77 (11) ◽  
pp. 1642-1652 ◽  
Author(s):  
A.A. El-Hadad ◽  
V. Barranco ◽  
A. Samaniego ◽  
I. Llorente ◽  
F.R. García-Galván ◽  
...  

2015 ◽  
Vol 73 ◽  
pp. 110-115 ◽  
Author(s):  
Fateh Singh Gill ◽  
Varij Panwar ◽  
Himanshu Gupta ◽  
G.S. Kalra ◽  
Shanta Chawla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document