Grain Size Control by Means of Solid Phase Crystallization of Amorphous Silicon

2007 ◽  
Vol 989 ◽  
Author(s):  
Jordi Farjas ◽  
Pere Roura ◽  
Pere Roca i Cabarrocas

AbstractThe grain size of thermally crystallized a-Si films is controlled by the nucleation, rN, and growth, rG, rates according to the standard Avrami's theory. Despite this evidence, most papers devoted to improve the crystallized grain size analyze their results with a qualitative reference to this theory. In this paper, we will show that one can identify the standard set of rN and rG values for a-Si and that experiments show that deviations from this standard values always result in a smaller grain size. It is also shown that one cannot expect any substantial improvement with non-conventional heat treatments. Finally, it is argued that a larger grain size is expected from a-Si films containing, in their as-grown state, a controlled density of embedded nanocrystals.

1996 ◽  
Vol 424 ◽  
Author(s):  
Y.-H. Song ◽  
S.-Y. Kang ◽  
K. I. Cho ◽  
H. J. Yoo ◽  
J. H. Kim ◽  
...  

AbstractThe substrate effects on the solid-phase crystallization of amorphous silicon (a-Si) have been extensively investigated. The a-Si films were prepared on two kinds of substrates, a thermally oxidized Si wafer (SiO2/Si) and a quartz, by low-pressure chemical vapor deposition (LPCVD) using Si2H6 gas at 470 °C and annealed at 600 °C in an N2 ambient for crystallization. The analysis using XRD and Raman scattering shows that crystalline nuclei are faster formed on the SiO2/Si than on the quartz, and the time needed for the complete crystallization of a-Si films on the SiO2/Si is greatly reduced to 8 h from ˜15 h on the quartz. In this study, it was first observed that crystallization in the a-Si deposited on the SiO2/Si starts from the interface between the a-Si film and the thermal oxide of the substrate, called interface-induced crystallization, while random nucleation process dominates on the quartz. The very smooth surface of the SiO2/Si substrate is responsible for the observed interface-induced crystallization of a-Si films.


2000 ◽  
Vol 15 (7) ◽  
pp. 1630-1634 ◽  
Author(s):  
A. Rodríguez ◽  
J. Olivares ◽  
C. González ◽  
J. Sangrador ◽  
T. Rodríguez ◽  
...  

The crystallization kinetics and film microstructure of poly-SiGe layers obtained by solid-phase crystallization of unimplanted and C- and F-implanted 100-nm-thick amorphous SiGe films deposited by low-pressure chemical vapor deposition on thermally oxidized Si wafers were studied. After crystallization, the F- and C-implanted SiGe films showed larger grain sizes, both in-plane and perpendicular to the surface of the sample, than the unimplanted SiGe films. Also, the (111) texture was strongly enhanced when compared to the unimplanted SiGe or Si films. The crystallized F-implanted SiGe samples showed the dendrite-shaped grains characteristic of solid-phase crystallized pure Si. The structure of the unimplanted SiGe and C-implanted SiGe samples consisted of a mixture of grains with well-defined contour and a small number of quasi-dendritic grains. These samples also showed a very low grain-size dispersion.


2010 ◽  
Vol 44-47 ◽  
pp. 4151-4153 ◽  
Author(s):  
Rui Min Jin ◽  
Ding Zhen Li ◽  
Lan Li Chen ◽  
Xiang Ju Han ◽  
Jing Xiao Lu

Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.


1996 ◽  
Vol 448 ◽  
Author(s):  
Eui-Hoon Hwang ◽  
Jae-Sang Ro

AbstractA novel method for the fabrication of poly-Si films with a large grain size is reported using solid phase crystallization (SPC) of LPCVD amorphous Si films by nucleation interface control. The reference films used in this study were 1000 Ǻ -thick a-Si films deposited at 500°C at a total pressure of 0.35 Torr using Si2H6/He. Since the deposition condition changes the incubation time, i.e. nucleation rate, and since nucleation occurs dominantly at a-Si/SiO2 interface, we devised the following deposition techniques for the first time in order to obtain the larger gain size. A very thin a-Si layer (~ 50 Ǻ) with the deposition conditions having long incubation time is grown first and then the reference films (~ 950 Ǻ) are grown successively. Various composite films with different combinations were tested. The crystallization kinetics of composite films was observed to be determined by the deposition conditions of a thin a-Si layer at the a-Si/SiO2 interface. Nucleation interface was also observed to be modified by interrupted gas supply resulting in the enhancement of the grain size.


1998 ◽  
Vol 508 ◽  
Author(s):  
YongWoo Choi ◽  
JeongNo Lee ◽  
TaeWoong Jang ◽  
ByungTae Ahn

AbstractSolid phase crystallization has the advantages of low cost and excellent uniformity but the crystallization temperature is too high to use glass as a substrate. Using microwave annealing, we crystallized a-Si films at 550 °C within 3 h, which is much shorter than the annealing time at 600 °C of furnace annealing. We fabricated TFTs with poly-Si films crystallized by microwave annealing at low temperature and obtained the characteristics slightly better than or at least comparable to the TFTs by furnace annealing in spite of smaller grain size. This may be due to the improvement of surface roughness of poly-Si film. The poly-Si TFTs with PECVD a-Si film showed better characteristics than the TFTs with LPCVD a-Si film because of larger grain size and smoother Si/SiO2 interface.


Author(s):  
Ernest L. Hall ◽  
Lee E. Rumaner ◽  
Mark G. Benz

The intermetallic compound Nb3Sn is a type-II superconductor of interest because it has high values of critical current density Jc in high magnetic fields. One method of forming this compound involves diffusion of Sn into Nb foil containing small amounts of Zr and O. In order to maintain high values of Jc, it is important to keep the grain size in the Nb3Sn as small as possible, since the grain boundaries act as flux-pinning sites. It has been known for many years that Zr and O were essential to grain size control in this process. In previous work, we have shown that (a) the Sn is transported to the Nb3Sn/Nb interface by liquid diffusion along grain boundaries; (b) the Zr and O form small ZrO2 particles in the Nb3Sn grains; and (c) many very small Nb3Sn grains nucleate from a single Nb grain at the reaction interface. In this paper we report the results of detailed studies of the Nb3Sn/Nb3Sn, Nb3Sn/Nb, and Nb3Sn/ZrO2 interfaces.


2021 ◽  
pp. 138770
Author(s):  
Linlin Guan ◽  
Leiming Yu ◽  
Lijuan Wu ◽  
Shuyu Zhang ◽  
Yuting Lin ◽  
...  

1995 ◽  
Vol 102 (12) ◽  
pp. 5082-5087 ◽  
Author(s):  
Thomas Palberg ◽  
Wolfgang Mönch ◽  
Jürgen Schwarz ◽  
Paul Leiderer

2017 ◽  
Vol 544 ◽  
pp. 306-311 ◽  
Author(s):  
Shunsuke Tanaka ◽  
Kenta Okubo ◽  
Koji Kida ◽  
Miki Sugita ◽  
Takahiko Takewaki

Sign in / Sign up

Export Citation Format

Share Document