Transient and Furnace Annealing of Ion Implanted Gallium Arsenide

1980 ◽  
Vol 1 ◽  
Author(s):  
J. S. Williams ◽  
H. B. Harrison

ABSTRACTThis review examines the annealing behaviour of ion implanted gallium arsenide during furance, laser and e-beam processing.The two annealing regimes, namely solid phase regrowth via furnace or CW laser/e-beam annealing and liquid phase epitaxy produced by pulsed lasers/e-beam, are examined in some detail.Emphasis is placed upon an understanding of the physical processes which are important during the various annealing modes.Comparison with the annealing behaviour of ion implantedelemental semiconductors(notably silicon) is made throughout the review to highlight relevant similarities and differences between compound and elemental semiconductors.The electrical properties of annealed gallium arsenide layers are not treatedin any detail, although particular observations which are relevant to the annealing processes are briefly discussed.

1982 ◽  
Vol 13 ◽  
Author(s):  
J.S. Williams

ABSTRACTThis paper provides a brief overview of the application of transient annealing to the removal of ion implantation damage and dopant activation in GaAs. It is shown that both the liquid phase and solid phase annealing processes are more complex in GaAs than those observed in Si. Particular attention is given to observations of damage removal, surface dissociation, dopant redistribution, solubility and the electrical properties of GaAs. The various annealing mechanisms are discussed and areas in need of further investigation are identified.


1982 ◽  
Vol 13 ◽  
Author(s):  
J. Narayan ◽  
O. W. Holland ◽  
G. L. Olson

ABSTRACTThe nature of residual damage in As+, Sb+, and In+ implanted silicon after CW laser and e− beam annealing has been studied using plan-view and cross-section electron microscopy. Lattice location of implanted atoms and their concentrations were determined by Rutherford backscattering and channeling techniques. Maximum substitutional concentrations achieved by furnace annealing in a temperature range of 500–600°C have been previously reported [1] and greatly exceeded the retrograde solubility limits for all dopants studied. Higher temperatures and SPE growth rates characteristic of electron or cw laser annealing did not lead to greater incorporation of dopant within the lattice and often resulted in dopant precipitation. Dopant segregation at the surface was sometimes observed at higher temperatures.


1984 ◽  
Vol 35 ◽  
Author(s):  
G.L. Olson ◽  
J.A. Roth ◽  
Y. Rytz-Froidevaux ◽  
J. Narayan

ABSTRACTThe temperature dependent competition between solid phase epitaxy and random crystallization in ion-implanted (As+, B+, F+, and BF2+) silicon films is investigated. Measurements of time-resolved reflectivity during cw laser heating show that in the As+, F+, and BF2+-implanted layers (conc 4×1020cm-3) epitaxial growth is disrupted at temperatures 1000°C. This effect is not observed in intrinsic films or in the B+-implanted layers. Correlation with results of microstructural analyses and computer simulation of the reflectivity experiment indicates that disruption of epitaxy is caused by enhancement of the random crystallization rate by arsenic and fluorine. Kinetics parameters for the enhanced crystallization process are determined; results are interpreted in terms of impurity-catalyzed nucleation during the random crystallization process.


1982 ◽  
Vol 13 ◽  
Author(s):  
B. R. Appleton ◽  
J. Narayan ◽  
O. W. Holland ◽  
S. J. Pennycook

AbstractIt Will be shown that under suitable conditions ion implanted impurities in Si can precipitate and grow coherently within the single crystal lattice during recrystallization induced by pulsed laser or thermal annealing. Ion channeling and transmission electron microscopy (Tem) were used to characterize such precipitates in Si implanted with Sb and B and thermally annealed, and in Si implanted with Tl and annealed with a pulsed ruby laser.The orientations of these precipitates were determined from TEM and detailed angular scans using ion scattering channeling.The nucleation and precipitation processes will be discussed in terms of differences in the liquid and solid phase regrowth mechanisms.


1990 ◽  
Vol 67 (9) ◽  
pp. 4036-4041 ◽  
Author(s):  
Masafumi Taniwaki ◽  
Hideto Koide ◽  
Naoto Yoshimoto ◽  
Toshimasa Yoshiie ◽  
Somei Ohnuki ◽  
...  

1986 ◽  
Author(s):  
Harry B. Dietrich ◽  
R. Magno

1973 ◽  
Vol 44 (10) ◽  
pp. 4393-4399 ◽  
Author(s):  
A. H. Kachare ◽  
W. G. Spitzer ◽  
A. Kahan ◽  
F. K. Euler ◽  
T. A. Whatley

Sign in / Sign up

Export Citation Format

Share Document