On the Contacts Formed in Ni-Al-Si System Due to Localized Melting by Means of Rapid Thermal Processing

1988 ◽  
Vol 100 ◽  
Author(s):  
A. Katz ◽  
Y. Komem

ABSTRACTLocalized rapid melting of an intermediate Al film in the Ni(30nm)/Al(10nm)/<100>n-Si system was successfully carried out by means of rapid thermal processing at temperatures higher than 580°C. This rapid melting resulted in the formation of a unique metal-silicon contact composed of three separated layers and has the following structure: Ni(Al0.5,Si0.5)/Al3 Ni/NiSi / <100>n-Si. It was found on the basis of quenching treatments after subsequent rapid thermal processings that an eutectic melting initiated at the Al-Si interface at 580°C, propagated towards the Ni layer and then formed a localized melt zone confined mainly to the region of the intermediate Al layer. The formation of the nickel silicides took place at the silicon surface after Ni diffusion through the melt zone, while the Al compounds were formed during a solidification process of the eutectic liquid. The eutectic melting at 580°C led to the decrease of the sheet resistance of the formed films from 3.2 to 2.6 / and to the increase of the Schottky barrier height of the contact from 0.6 to 0.76 eV.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2011 ◽  
Vol 98 (16) ◽  
pp. 162111 ◽  
Author(s):  
J. Kováč ◽  
R. Šramatý ◽  
A. Chvála ◽  
H. Sibboni ◽  
E. Morvan ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 597-599 ◽  
Author(s):  
Lin-Lin Wang ◽  
Wu Peng ◽  
Yu-Long Jiang ◽  
Bing-Zong Li

2007 ◽  
Vol 994 ◽  
Author(s):  
S. L. Liew ◽  
C. T. Chua ◽  
D. H. L Seng ◽  
D. Z. Chi

AbstractSchottky barrier height (ÖB) engineering of NiGe/n-Ge(001) diodes was achieved through germanidation induced dopant segregation on As implanted-Ge substrates. was reduced from 0.55 eV to 0.16 eV with increasing As dose on n-Ge(001) while on p-Ge(001), the diodes exhibited increasing ÖB.


2014 ◽  
Vol 2 (25) ◽  
pp. 4909-4917 ◽  
Author(s):  
F. Ferrarese Lupi ◽  
T. J. Giammaria ◽  
G. Seguini ◽  
M. Ceresoli ◽  
M. Perego ◽  
...  

Rapid Thermal Processing (RTP) technology was employed to perform flash grafting reactions of a hydroxyl terminated poly(styrene-r-methylmethacrylate) random copolymer to a silicon surface.


Sign in / Sign up

Export Citation Format

Share Document