3D Photonic Structures by Sol-Gel Imprint Lithography

2007 ◽  
Vol 1002 ◽  
Author(s):  
Marc Verschuuren ◽  
Hans Van Sprang

ABSTRACTWe present a new and relatively simple process to manufacture three-dimensional sub-micron structures over square centimeter areas using a soft stamp imprinting process. The room-temperature replication process shows excellent quality in transferring features directly into inorganic silica material with pattern distortion smaller than 0.03% over an area of 15×15mm2. Using a self assembly planarization method the imprinting process can be repeated to form three-dimensional structures. As a demonstration, a multilayer stack of four crossed gratings is shown.

Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


2010 ◽  
Vol 65 (2) ◽  
pp. 152-156
Author(s):  
Di Sun ◽  
Cheng-Feng Yang ◽  
Zhan-Hua Wei ◽  
Geng-Geng Luo ◽  
Na Zhang ◽  
...  

A new three-dimensional (3D) supramolecular framework, [Ag2(bipy)2(bdc)·4H2O]n 1, has been synthesized by the ultrasonic reaction of Ag2O, bipy and H2bdc (H2bdc = 1,4-benzenedicarboxylic acid; bipy = 4,4’-bipyridine) at room temperature. It exhibits a new 3D supramolecular framework which is built from cationic Ag-bipy chains and anionic bdc-H2O sheets through hydrogen bonds, π · · ·π stacking and C-H· · ·π interactions. Additionally, the photoluminescent and thermal properties of 1 were investigated.


2014 ◽  
Vol 50 (84) ◽  
pp. 12757-12760 ◽  
Author(s):  
Yulun Tao ◽  
Juchuan Li ◽  
Anjian Xie ◽  
Shikuo Li ◽  
Ping Chen ◽  
...  

Supramolecular self-assembly of 3D conductive polymer crystals in a suitable solvent environment at room temperature.


2012 ◽  
Vol 18 (4) ◽  
pp. 885-891 ◽  
Author(s):  
Yonghai Song ◽  
Yu Wang ◽  
Lingli Wan ◽  
Shuhong Ye ◽  
Haoqing Hou ◽  
...  

AbstractThe self-assembly of α,ω-dihexylsexithiophene molecules on an Au(111) surface was examined by using scanning tunneling microscopy at room temperature, revealing the internal molecular structures of the sexithiophene backbones and the hexyl side chains. The α,ω-dihexylsexithiophene formed a large and well-ordered monolayer in which the molecule lay flatly on the Au(111) surface and was separated into two chiral domains. A detailed observation reveals that the admolecules were packed in one lamellae with their molecular axis aligned along the main axis of the Au(111) substrate with their hexyl chains deviated from ⟨110⟩ direction of the Au(111) substrate by 12 ± 0.5°. In contrast to the behavior in the three-dimensional bulk structure, flat-lying adsorption introduced molecular chirality: right- and left-handed molecules separate into domains of two different orientations, which are mirror symmetric with respect to the ⟨121⟩ direction of the Au(111) substrate. Details of the adlayer structure and the chiral self-assembly were discussed here.


2011 ◽  
Vol 688 ◽  
pp. 334-338 ◽  
Author(s):  
He Yang ◽  
Yun Ze Long ◽  
Hang Jun Ding

In this work, we report on conducting polyaniline (PANI) nanostructures synthesized by a simplified template-free self-assembly method, which are doped with different oxidants such as ammonium persulfate (APS), FeCl3, Fe(NO3)3, and Fe2(SO4)3. It is found that the morphologies of the as-prepared PANI nanowires are dependent on the oxidant and the molar ratio of aniline to oxidant. The PANI nanostructures are semiconducting with room-temperature conductivity ranging from 10-2to 100S/cm, and the temperature dependence of conductivity follows three-dimensional Mott variable range hopping (3D Mott-VRH) model. In addition, the PANI pellets exhibit hydrophilic behavior.


2015 ◽  
Vol 3 (30) ◽  
pp. 15692-15699 ◽  
Author(s):  
Yingjie Wu ◽  
Guohua Gao ◽  
Huiyu Yang ◽  
Wenchao Bi ◽  
Xing Liang ◽  
...  

Three-dimensional V2O5/MWCNT core/shell hybrid aerogels were controllably synthesized through a mixed growth and self-assembly methodology in a one-pot sol–gel process.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Masood Naqshbandi ◽  
John Canning ◽  
Brant C. Gibson ◽  
Melissa M. Nash ◽  
Maxwell J. Crossley

2008 ◽  
Vol 2008 (10) ◽  
pp. 584-586 ◽  
Author(s):  
Fayan Meng ◽  
Yuanhong Jiao ◽  
Xuemei Chen ◽  
Lei Teng

A self-assembled, tetrameric water cluster stabilised by carboxyl-bridging has been characterised by X-ray diffraction studies and thermogravimetric analysis. Every water cluster is connected strongly via hydrogen bonds to four carboxyl oxygens of a terephthalate anion. The water rings are stable at room temperature, but when thermally decomposed, the water loss is irreversible.


Sign in / Sign up

Export Citation Format

Share Document