Pressure Dependent Rapid Thermal Processing of CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-ray Diffraction

2007 ◽  
Vol 1012 ◽  
Author(s):  
Immo Michael Kötschau ◽  
Humberto Rodriguez-Alvarez ◽  
Cornelia Streeck ◽  
Alfons Weber ◽  
Manuela Klaus ◽  
...  

AbstractThe rapid thermal processing (RTP) of Cu-rich Cu/In precursors for the synthesis of CuInS2 thin films is possible within a broad processing window regarding leading parameters like top temperature, heating rate, and Cu excess. The key reaction pathway for the CuInS2 phase formation has already been investigated by in-situ energy dispersive X-ray diffraction (EDXRD) for various precursor stoichiometries, heating rates and top temperatures at sulphur partial pressure conditions which are typical for physical vapour deposition processes. According to the phase diagrams of the binary sulphide phases, the sulfur partial pressure strongly determines the occuring crystalline phases. However, a controlled variation of the maximum sulphur partial in a typical RTP experiment has not been carried out yet. In order to study the influence of this parameter a special RTP reaction chamber was designed suitable for in-situ EDXRD experiments at the EDDI beamline at BESSY, Berlin. In a typical in-situ RTP/EDXRD experiment sulphur and a Cu/In/Mo/glass precursor are placed in an evacuated graphite reactor. The amount of sulphur determines the maximum pressure available at the top temperature of the experiment. As the RTP process proceeds a complete EDXRD spectrum is acquired every 10 seconds and thus the various stages of the reaction path and the crystalline phases can be monitored. The first experiments show already a significant change in the reaction pathway and the secondary Cu-S phases which segregate on top of the CuInS2 thin film during the reaction.

2018 ◽  
Vol 6 (24) ◽  
pp. 11496-11506 ◽  
Author(s):  
Paul Pistor ◽  
Thomas Burwig ◽  
Carlo Brzuska ◽  
Björn Weber ◽  
Wolfgang Fränzel

We present the identification of crystalline phases by in situ X-ray diffraction during growth and monitor the phase evolution during subsequent thermal treatment of CH3NH3PbX3 (X = I, Br, Cl) perovskite thin films.


2015 ◽  
Vol 86 (1) ◽  
pp. 013902 ◽  
Author(s):  
Md. Imteyaz Ahmad ◽  
Douglas G. Van Campen ◽  
Jeremy D. Fields ◽  
Jiafan Yu ◽  
Vanessa L. Pool ◽  
...  

1991 ◽  
Vol 243 ◽  
Author(s):  
Jiayu Chen ◽  
Keith G. Brooks ◽  
K.R. Udayakumar ◽  
L. Eric Cross

AbstractThe crystallization process of PZT thin films has been studied in situ by means of Environmental Scanning Electron Microscopy ( ESEM ). Based on the ESEM observations, the Rapid Thermal Processing (RTP) technique has been employed to crystallize ferroelectric thin films. Various annealing temperature-time combinations were investigated; the results indicate the crystallization process to be very fast. X-ray diffraction data shows the crystallization to be complete in 10 seconds at 600°C, and in 1 second at 700°C. In comparison with conventionally furnace processed films, the RTP films have comparable ferroelectric and dielectric properties, but are distinguished by superior breakdown strengths and morphologically smoother surface. The relation between microstructure of films and crystallizing parameters has been studied.


2011 ◽  
Vol 519 (21) ◽  
pp. 7193-7196 ◽  
Author(s):  
D. Thomas ◽  
R. Mainz ◽  
H. Rodriguez-Alvarez ◽  
B. Marsen ◽  
D. Abou-Ras ◽  
...  

2007 ◽  
Vol 1012 ◽  
Author(s):  
Alfons Weber ◽  
Immo Kötschau ◽  
Susan Schorr ◽  
Hans-Werner Schock

AbstractChalcopyrite CuInS2 and the structurally related kesterite Cu2ZnSnS4 are known as photovoltaic absorber materials. In this study different precursor thin films of the quaternary Cu-Zn-Sn-S system (stacking: Mo/CuS/ZnS-SnS) and of the pentenary Cu-In-Zn-Sn-S system (stacking: Mo/CuIn/ZnS-SnS) were annealed in sulfur atmosphere. The predominant crystalline phases were detected by in-situ energy dispersive X-ray diffraction (EDXRD). Additionally the X-ray fluorescence signals of the film components were recorded to detect diffusion effects. For the quaternary system we found ZnS, CuS, Cu2-xS, Sn2S3 and SnS as main binary phases during annealing. The Sn2S3-SnS phase transition had a significant impact on the later formation of ternary/quaternary phases. A high diffusivity of copper can explain the little influence of the precursor stacking on the reaction path and may also be responsible for the poor adhesion of the films. For annealing temperatures above 450°C Cu2ZnSnS4 can be identified clearly by XRD. The incorporation of indium in the system leads to new diffraction peaks which can be explained by the formation of solid solutions in the system CuInS2-Cu2ZnSnS4.


1997 ◽  
Vol 502 ◽  
Author(s):  
Yuji Yoshida ◽  
Hiroshi Takiguchi ◽  
Nobutaka Tanigaki ◽  
Kiyoshi Yase

ABSTRACTWe are investigating well-ordered highly crystalline thin films made using organic molecular beam deposition (OMBD) since it is important to control the formation mechanism at the initial growth process. Then, we developed a new in situ technique of energy dispersive grazing incidence X-ray diffraction utilized within an ultrahigh vacuum system. This technique (in situ ED-GID) makes it possible to examine the crystal structure, orientation and morphology of organic thin films during deposition without any damage to the film. In the present review, we examined the growth process of thin films of functional organic dyes, fullerene (C60) and p-sexiphenyl (6P) by using this in situ ED-GID. The crystal strucutre and molecular orientation in epitaxially-grown thin films were confirmed during the initial stages of growth. Also, the morphology of C60 thin films was examined during the deposition. As a result, it was confirmed that the decay curves of X-ray fluorescence indicate different island growth in C60 thin films.


1997 ◽  
Vol 485 ◽  
Author(s):  
Chih-hung Chang ◽  
Billy Stanbery ◽  
Augusto Morrone ◽  
Albert Davydov ◽  
Tim Anderson

AbstractCuInSe2 thin films have been synthesized from binary precursors by Rapid Thermal Processing (RTP) at a set-point temperature of 290°C for 70 s. With appropriate processing conditions no detrimental Cu2-xSe phase was detected in the CIS films. The novel binary precursor approach consisted of a bilayer structure of In-Se and Cu-Se compounds. This bilayer structure was deposited by migration enhanced physical vapor deposition at a low temperature (200°C) and the influence of deposition parameters on the precursor film composition was determined. The bilayer structure was then processed by RTP and characterized for constitution by X-ray diffraction and for composition by Wavelength Dispersive X-ray Spectroscopy.


2017 ◽  
Vol 111 (8) ◽  
pp. 082907 ◽  
Author(s):  
Seiji Nakashima ◽  
Osami Sakata ◽  
Hiroshi Funakubo ◽  
Takao Shimizu ◽  
Daichi Ichinose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document