Combinatorial Searching for Noble Metal-based Thin Film Amorphous Alloys for Glass Lens Mold

2007 ◽  
Vol 1024 ◽  
Author(s):  
Junpei Sakurai ◽  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Hiroyuki Tachikawa ◽  
Akira Shimokohbe

AbstractThis paper presents the properties of Pt-based thin film amorphous alloys developed for a glass lens mold. To search for the amorphous alloys, Pt-Zr-Ni and Pt-Hf-Ni thin film libraries were fabricated using combinatorial arc plasma deposition (CAPD). The composition ranges of the amorphous region in each library were 50 to 60 at.% Pt, 0 to 20 at.% Ni, and balance being Zr or Hf. To evaluate the thermal and mechanical properties of these amorphous alloys, Pt51Zr39Ni10 and Pt52Hf36Ni12 samples, as typical amorphous samples, were prepared by sputtering. The Pt51Zr39Ni10 sample showed a crystallization temperature, Tx, of 939 K and a fracture stress, σf, of 1.44 GPa. The Pt52Hf36Ni12 sample showed a Tx of 978 K and a σf of 0.3 GPa. The Pt51Zr39Ni10 and Pt52Hf36Ni12 samples did not achieve the target Tx (973K) and σf (1.0 GPa). In order to achieve the target properties, Zr was displaced with Hf to increase the Tx of Pt-Zr-Ni and four Pt51HfxZr37-xNi12 samples were prepared. The Pt51Hf20Zr17Ni12 sample had a Tx of 992 K and a σf of 0.87 GPa, and almost achieved the target properties. The machinability of the Pt51Hf20Zr17Ni12 sample was also evaluated. Though this sample could be cut using a diamond tool, it did not show sufficient machinability. In order to improve the accuracy of the glass mold shape, the machinability of the Pt-based thin film amorphous alloys require further modification.

2007 ◽  
Vol 1024 ◽  
Author(s):  
Mitsuhiro Abe ◽  
Seiichi HATA ◽  
Ryusuke YAMAUCHI ◽  
Junpei SAKURAI ◽  
Akira SHIMOKOHBE

AbstractRecently, the materials of functional optical glass lens mold have been studied. We had searched for the novel amorphous alloy having high crystallization temperature Tx using combinatorial arc plasma deposition (CAPD). In the previous work, Ru-based and Pt-based alloys were investigated. Although these amorphous alloys had high Tx of more than 973 K, they did not show good machinability. In this work, in order to progress machinability of amorphous samples, the various properties of the Pt-Zr-Ni thin film amorphous alloys were investigated. The properties of desired sample were as follows: (1) Tx exceeds 923K. (2) sf exceeds 2.0GPa. (3) Non-sticking characteristics with melting glass. (4) Good machinability.As the process of searching for amorphous alloys, 3267 samples were deposited by CAPD. The phase and composition of the CAPD samples with thickness more than 500nm were evaluated. Thickness of the CAPD samples was measured by a white-light interferometer. Compositions were measured by an energy dispersive X-ray fluorescence spectrometer. Phases were identified by an X-ray diffractmeter. From these results, 312 amorphous compositions were found. The period of searching for amorphous composition was only about twenty days. This shows the effectiveness of CAPD.Tx and fracture stress Ðf of the sputter-deposited amorphous samples having the same composition as amorphous CAPD samples were measured because CAPD samples were too small to evaluate thermal and mechanical properties. Tx was measured by differential scanning calorimeter. sf was measured by tensile tests using a thermo-mechanical analyzer.At first, in order to investigate the effect of Pt-content on Tx, the PtxZr (90-x)Ni10 samples were fabricated by the sputter. Pt-content was ranged from 20 to 50 at.%. Tx increased with increasing Pt-content, and the Pt51Zr39Ni10 sample showed the highest Tx of 939K. The sample has needs to show Pt-rich composition to show Tx of more than 923K. However, sf of all sample showed less than 2GPa.Subsequently, in order to search for Pt-rich sample having high sf, the properties of the Pt50Zr(50-x)Nix sample were investigated. Ni-content was ranged from 5 to 15 at.%. As the results, Tx increasing with increasing Ni-content. The Pt50Zr36Ni14 sample showed the highest Tx of 985 K and Ðf of 2.12 GPa.Sticking characteristics of the Pt50Zr36Ni14 sample with melting glass were measured. Melting glass was felled in drops on the samples, and then droplet was removed without adhering to the sample. Machinability of the Pt50Zr36Ni14 sample was evaluated by cutting tests using diamond tools. Surface roughness of this sample worked was several nanometers. This result indicated that the Pt50Zr36Ni14 sample showed good machinability. From these results, it is considered that the Pt50Zr36Ni14 sample is suitable for the materials for glass lens mold.


2010 ◽  
Vol 447-448 ◽  
pp. 661-665 ◽  
Author(s):  
Junpei Sakurai ◽  
Mitsuhiro Abe ◽  
Masayuki Ando ◽  
Seiichi Hata

This paper presents a search for Ni-Nb-Zr amorphous alloys for application as glass lens molding die materials. To efficiently screen candidate materials, we employed the combinatorial method partially to evaluate thermal stability. First, compositionally spread Ni-Nb-Zr libraries were fabricated by combinatorial arc plasma deposition (CAPD). In order to evaluate the high thermal stability, Ni-Nb-Zr amorphous samples in the libraries were annealed at 723K, the molding temperature for glass lens, for various times in vacuum. Phases in the annealed samples were identified by X-ray diffraction. From XRD identification, candidate amorphous samples with high thermal stabilities were screened. Sputtered samples with the same compositions as the candidate amorphous samples were then fabricated. Other desired properties for glass lens molding die materials, such as mechanical strength, machinability and anti-sticking properties, were evaluated. These investigations revealed Ni36Nb39Zr25 to be a suitable material for a new glass lens molding die. This material exhibited a high fracture stress f of 1.3 GPa, good heat resistance, good machinability, and excellent anti-sticking properties to molten glass.


2007 ◽  
Vol 46 (4A) ◽  
pp. 1590-1595 ◽  
Author(s):  
Junpei Sakurai ◽  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Akira Shimokohbe

2009 ◽  
Vol 3 (8) ◽  
pp. 1022-1032 ◽  
Author(s):  
Junpei SAKURAI ◽  
Seiichi HATA ◽  
Ryusuke YAMAUCHI ◽  
Akira SHIMOKOHBE

2005 ◽  
Vol 894 ◽  
Author(s):  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Junpei Sakurai ◽  
Akira Shimokohbe

AbstractCombinatorial arc plasma deposition (CAPD) method was used to search for new compositions of thin film amorphous alloys. A cathodic arc plasma gun (APG) was adopted as the deposition source for CAPD. The CAPD setup has three APGs radiating out from the center of a substrate. The APGs shoot pulse-like plasma shots one by one at a specific time interval. The plasma from each APG cathode is guided onto a specific area on a substrate by a magnetic field. Each such area overlaps the adjacent ones. Thus, a compositionally-graded thin film is deposited in the overlap area because of mixing of each deposited thin film from each APG that has a thickness grade. The deposited thin film is separated into 1,089 samples (the size of each is 1×1 mm2) using a grid on the substrate. The samples together are referred to as the thin film library. To demonstrate the capability of CAPD, two thin film libraries were deposited in this study. One is a thin film library of a PdCuSi alloy system, and the other is a MoZrPd system. The compositions and crystallinity of the samples were evaluated on the substrate using EDS and IP-XRD respectively. Analysis of the samples showed a graded composition, and some of the samples were shown to be amorphous in both libraries.


2007 ◽  
Vol 254 (3) ◽  
pp. 720-724 ◽  
Author(s):  
Junpei Sakurai ◽  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Akira Shimokohbe

Sign in / Sign up

Export Citation Format

Share Document