Combinatorial Searching for Ni-Nb-Zr Amorphous Alloys as Glass Lens Molding Die Materials

2010 ◽  
Vol 447-448 ◽  
pp. 661-665 ◽  
Author(s):  
Junpei Sakurai ◽  
Mitsuhiro Abe ◽  
Masayuki Ando ◽  
Seiichi Hata

This paper presents a search for Ni-Nb-Zr amorphous alloys for application as glass lens molding die materials. To efficiently screen candidate materials, we employed the combinatorial method partially to evaluate thermal stability. First, compositionally spread Ni-Nb-Zr libraries were fabricated by combinatorial arc plasma deposition (CAPD). In order to evaluate the high thermal stability, Ni-Nb-Zr amorphous samples in the libraries were annealed at 723K, the molding temperature for glass lens, for various times in vacuum. Phases in the annealed samples were identified by X-ray diffraction. From XRD identification, candidate amorphous samples with high thermal stabilities were screened. Sputtered samples with the same compositions as the candidate amorphous samples were then fabricated. Other desired properties for glass lens molding die materials, such as mechanical strength, machinability and anti-sticking properties, were evaluated. These investigations revealed Ni36Nb39Zr25 to be a suitable material for a new glass lens molding die. This material exhibited a high fracture stress f of 1.3 GPa, good heat resistance, good machinability, and excellent anti-sticking properties to molten glass.

2009 ◽  
Vol 2009.17 (0) ◽  
pp. _435-1_-_435-2_
Author(s):  
Junpei SAKURAI ◽  
Seiichi HATA ◽  
Ryusuke YAMAUCHI ◽  
Yuko AONO ◽  
Akira SHIMOKOHBE

2014 ◽  
Vol 116 ◽  
pp. 6-10 ◽  
Author(s):  
Shengxian Jiang ◽  
Mitsuhiro Abe ◽  
Masayuki Ando ◽  
Yuko Aono ◽  
Junpei Sakurai ◽  
...  

2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


2007 ◽  
Vol 1024 ◽  
Author(s):  
Junpei Sakurai ◽  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Hiroyuki Tachikawa ◽  
Akira Shimokohbe

AbstractThis paper presents the properties of Pt-based thin film amorphous alloys developed for a glass lens mold. To search for the amorphous alloys, Pt-Zr-Ni and Pt-Hf-Ni thin film libraries were fabricated using combinatorial arc plasma deposition (CAPD). The composition ranges of the amorphous region in each library were 50 to 60 at.% Pt, 0 to 20 at.% Ni, and balance being Zr or Hf. To evaluate the thermal and mechanical properties of these amorphous alloys, Pt51Zr39Ni10 and Pt52Hf36Ni12 samples, as typical amorphous samples, were prepared by sputtering. The Pt51Zr39Ni10 sample showed a crystallization temperature, Tx, of 939 K and a fracture stress, σf, of 1.44 GPa. The Pt52Hf36Ni12 sample showed a Tx of 978 K and a σf of 0.3 GPa. The Pt51Zr39Ni10 and Pt52Hf36Ni12 samples did not achieve the target Tx (973K) and σf (1.0 GPa). In order to achieve the target properties, Zr was displaced with Hf to increase the Tx of Pt-Zr-Ni and four Pt51HfxZr37-xNi12 samples were prepared. The Pt51Hf20Zr17Ni12 sample had a Tx of 992 K and a σf of 0.87 GPa, and almost achieved the target properties. The machinability of the Pt51Hf20Zr17Ni12 sample was also evaluated. Though this sample could be cut using a diamond tool, it did not show sufficient machinability. In order to improve the accuracy of the glass mold shape, the machinability of the Pt-based thin film amorphous alloys require further modification.


2009 ◽  
Vol 64 (11-12) ◽  
pp. 1535-1541 ◽  
Author(s):  
Vera Hartdegen ◽  
Thomas M. Klapötke ◽  
Stefan M. Sproll

Tris(2-(1H-tetrazol-1-yl)ethyl)amine (1) was synthesized as gas-generating agent and characterized by vibrational (IR) and NMR spectroscopy. The energetic properties were determined by bomb calorimetric measurements along with calculations using the EXPLO5 software. Tris(2-(1H-tetrazol- 1-yl)ethyl)amine (1) was used for further reactions with copper(II) nitrate to form a three-dimensional coordination polymer 3. Both compounds were characterized by single crystal X-ray diffraction. The thermal stability was determined by DSC measurements and the physical stability by BAMstandards. Tris(2-(1H-tetrazol-1-yl)ethyl)amine (1) proved to be suitable as gas-generating agent with sufficient physical and thermal stabilities. The low thermal stability of the copper complex 3 disqualifies it as potential colorant agent for pyrotechnical applications


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Guangan Zhang ◽  
Zhibin Lu ◽  
Jibin Pu ◽  
Guizhi Wu ◽  
Kaiyuan Wang

Copper nitride (Cu3N) thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.


2007 ◽  
Vol 1024 ◽  
Author(s):  
Mitsuhiro Abe ◽  
Seiichi HATA ◽  
Ryusuke YAMAUCHI ◽  
Junpei SAKURAI ◽  
Akira SHIMOKOHBE

AbstractRecently, the materials of functional optical glass lens mold have been studied. We had searched for the novel amorphous alloy having high crystallization temperature Tx using combinatorial arc plasma deposition (CAPD). In the previous work, Ru-based and Pt-based alloys were investigated. Although these amorphous alloys had high Tx of more than 973 K, they did not show good machinability. In this work, in order to progress machinability of amorphous samples, the various properties of the Pt-Zr-Ni thin film amorphous alloys were investigated. The properties of desired sample were as follows: (1) Tx exceeds 923K. (2) sf exceeds 2.0GPa. (3) Non-sticking characteristics with melting glass. (4) Good machinability.As the process of searching for amorphous alloys, 3267 samples were deposited by CAPD. The phase and composition of the CAPD samples with thickness more than 500nm were evaluated. Thickness of the CAPD samples was measured by a white-light interferometer. Compositions were measured by an energy dispersive X-ray fluorescence spectrometer. Phases were identified by an X-ray diffractmeter. From these results, 312 amorphous compositions were found. The period of searching for amorphous composition was only about twenty days. This shows the effectiveness of CAPD.Tx and fracture stress Ðf of the sputter-deposited amorphous samples having the same composition as amorphous CAPD samples were measured because CAPD samples were too small to evaluate thermal and mechanical properties. Tx was measured by differential scanning calorimeter. sf was measured by tensile tests using a thermo-mechanical analyzer.At first, in order to investigate the effect of Pt-content on Tx, the PtxZr (90-x)Ni10 samples were fabricated by the sputter. Pt-content was ranged from 20 to 50 at.%. Tx increased with increasing Pt-content, and the Pt51Zr39Ni10 sample showed the highest Tx of 939K. The sample has needs to show Pt-rich composition to show Tx of more than 923K. However, sf of all sample showed less than 2GPa.Subsequently, in order to search for Pt-rich sample having high sf, the properties of the Pt50Zr(50-x)Nix sample were investigated. Ni-content was ranged from 5 to 15 at.%. As the results, Tx increasing with increasing Ni-content. The Pt50Zr36Ni14 sample showed the highest Tx of 985 K and Ðf of 2.12 GPa.Sticking characteristics of the Pt50Zr36Ni14 sample with melting glass were measured. Melting glass was felled in drops on the samples, and then droplet was removed without adhering to the sample. Machinability of the Pt50Zr36Ni14 sample was evaluated by cutting tests using diamond tools. Surface roughness of this sample worked was several nanometers. This result indicated that the Pt50Zr36Ni14 sample showed good machinability. From these results, it is considered that the Pt50Zr36Ni14 sample is suitable for the materials for glass lens mold.


2012 ◽  
Vol 271-272 ◽  
pp. 36-41
Author(s):  
Wei Yuan Yu ◽  
Wen Jiang Lu ◽  
Nai Rui Li

Al85Ni10Zr3Y2 and Al80Ni10Zr8-xCuxY2(x=1,2,3,5) alloy ribbons had been prepared by single roller melt-spinning process under vacuum conditions. The ribbons were investigated by X–ray diffraction and differential scanning calorimetry (DSC). The results revealed the strong effect of content of Cu、Zr elements on the glass forming ability and the thermal stability of the alloys. The formation of amorphous alloys are sensitive to contens of these two elements. The completely amorphous alloy or the primary amorphous phase alloy can be obtained when the content of Cu or Zr reach an optimization, otherwise only gaining crystal phase. Al80Ni10Zr7Cu1Y2 and Al80Ni10Zr3Cu5Y2 alloys possess the excellent glass forming ability, which can form the completely amorphous alloy or the composite material of the partial crystal in remaining amorphous.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Sign in / Sign up

Export Citation Format

Share Document