Multi-color Photoresponse Based on Interband and Intersubband Transitions in InAs and InGaAs Quantum Dot Photodetectors

2007 ◽  
Vol 1055 ◽  
Author(s):  
Brandon Scott Passmore ◽  
Jiang Wu ◽  
Eric A. Decuir ◽  
Omar Manasreh ◽  
Peter M. Lytvyn ◽  
...  

ABSTRACTThe interband and intersubband transitions in self-assembled InAs and In0.3Ga0.7As quantum dots grown by molecular beam epitaxy have been investigated for their use in visible, near-, and mid-infrared detection applications. Devices based on InAs quantum dots embedded in an InxGa1−xAs (0 to 0.3) graded well and In0.3Ga0.7As quantum dots were fabricated in order to measure the temperature dependent (77 – 300 K) photoresponse. The dark current was measured in the temperature range of 77 to 300 K for the devices. Room temperature photoresponse ranging between 0.6 to 1.3 μm was observed for the InAs and In0.3Ga0.7As quantum dot photodetectors. Furthermore, a dual band photoresponse in the visible, near-, and mid-infrared spectral regions for both devices was observed at 77 K. Using a self-consistent solution of Schrödinger-Poisson equations, the peak position energies of the interband and intersubband transitions in the two multi-color quantum dot infrared photodetector structures was calculated.

2009 ◽  
Vol 1208 ◽  
Author(s):  
Jiang Wu ◽  
Dali Shao ◽  
Omar Manasreh ◽  
Alvason Zhenhua Li ◽  
Zhiming M Wang ◽  
...  

AbstractIn this article, an alternative strain-free growth mode is presented where GaAs coupled-quantum dots are grown on lattice matched AlGaAs. The coupled quantum dots were grown at 550 °C in a molecular beam epitaxy system. The GaAs quantum dots were characterized by using a photoluminescence technique and an atomic force microscope. The photodetector was fabricated into normal incident configuration and photoconductivity spectra were measured covering the mid-infrared spectrum of 2.0 – 8.0 micron (intersubband transitions) and the visible-near-infrared spectrum of 0.5 – 0.9 micron (interband or exciton transitions). The photoresponse spectra in mid-infrared spectral range were found to exist at temperatures lower than 80 K, while the photoresponse spectra in the visible-near-infrared range were observed at temperatures as high as 300 K.


2012 ◽  
Vol 482-484 ◽  
pp. 2547-2550
Author(s):  
Peng Fei Gu ◽  
Ya Nan Wang ◽  
Jia Jia Cao ◽  
Yu Yan ◽  
Tie Qiang Zhang ◽  
...  

We here report the temperature effect on photoluminescence(PL) spectra of PbSe quantum dots (QDs), which exhibit a strong temperature dependence on their spectra position and intensity. They potentially act as the temperature marker, sensing temperature variations and reporting temperature changes remotely through optical readout. In addition, the temperature sensitivity characterized by peak position of PbSe QDs was found to be 0.39nm/°C in a range of 10-100 °C.


2014 ◽  
Vol 39 (23) ◽  
pp. 6577 ◽  
Author(s):  
A. Khiar ◽  
M. Eibelhuber ◽  
V. Volobuev ◽  
M. Witzan ◽  
A. Hochreiner ◽  
...  

2003 ◽  
Vol 94 (8) ◽  
pp. 4995 ◽  
Author(s):  
L. Malikova ◽  
Fred H. Pollak ◽  
R. A. Masut ◽  
P. Desjardins ◽  
Lev G. Mourokh

2018 ◽  
Vol 386 ◽  
pp. 68-74 ◽  
Author(s):  
Anatoly Dvurechenskii ◽  
Andrew Yakimov ◽  
Victor Kirienko ◽  
Alekcei Bloshkin ◽  
Vladimir Zinovyev ◽  
...  

New approaches to enhance properties of silicon based quantum dot heterostructures for optical device application were developed. That is strain driven heteroepitaxy, small-sized quantum dots, elemental compositions of the heterointerface, virtual substrate, plasmonic effects, and the quantum dot charging occupation with holes in epitaxially grown Ge quantum dots (QDs) on Si (100). Experiments have shown extraordinary optical properties of Ge/Si QDs heterostructures and mid-infrared quantum dot photodetectors performance.


2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040017
Author(s):  
F. Jain ◽  
R. H. Gudlavalleti ◽  
R. Mays ◽  
B. Saman ◽  
J. Chandy ◽  
...  

Multi-state room temperature operation of SiOx-cladded Si quantum dots (QD) and GeOx-cladded Ge quantum dot channel (QDC) field-effect transistors (FETs) and spatial wavefunction switched (SWS)-FETs have been experimentally demonstrated. This paper presents simulation of cladded Si and Ge quantum dot channel (QDC) field-effect transistors at 4.2°K and milli-Kelvin temperatures. An array of thin oxide barrier/cladding (∼1nm) on quantum dots forms a quantum dot superlattice (QDSL). A gradual channel approximation model using potential and inversion layer charge density nQM, obtained by the self-consistent solution of the Schrodinger and Poisson’s equations, is shown to predict I-V characteristics up to milli-Kelvin temperatures. Physics-based equivalent circuit models do not work below 53°K. However, they may be improved by adapting parameters derived from quantum simulations. Low-temperature operation improves noise margins in QDC- and SWS-FET based multi-bit logic, which dissipates lower power and comprise of fewer device count. In addition, the role of self-assembled cladded QDs with transfer gate provides a novel pathway to implement qubit processing.


2006 ◽  
Vol 14 (2) ◽  
Author(s):  
A. Perera

AbstractThe work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.


Author(s):  
K. D. Moiseev ◽  
Ya. A. Parkhomenko ◽  
M. P. Mikhailova ◽  
S. S. Kizhaev ◽  
E. V. Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document