Fabrication of Dispersed Permalloy Nanoparticles by Pulsed Laser Ablation in Aqua

2008 ◽  
Vol 1118 ◽  
Author(s):  
Ruqiang Bao ◽  
Zijie Yan ◽  
Yong Huang ◽  
Douglas B. Chrisey

ABSTRACTPermalloy (Ni81Fe19) nanoparticles with diameters of hundreds of nanometers have been successfully fabricated by pulsed laser ablation (PLA) in air, distilled water, pure ethanol and sodium dodecyl sulfate (SDS) aqueous solutions. The permalloy nanoparticles made in SDS solutions are typically spherical in shape. Lower laser energy with lower frequency leads to the formation of smaller permalloy nanoparticles. Higher concentration of SDS results in smaller nanoparticles. Lastly, we found some unusual permalloy nanoparticles with interesting morphologies made by PLA in air, distilled water and ethanol.

2019 ◽  
Vol 20 (2) ◽  
pp. 158-163
Author(s):  
Suk Hyun Kang, Kyung-Hwan Jung ◽  
Kang Min Kim ◽  
Won Rae Kim ◽  
Jung-Il Lee ◽  
Sungwook Mhin ◽  
...  

2011 ◽  
Vol 257 (12) ◽  
pp. 5278-5282 ◽  
Author(s):  
A.S. Nikolov ◽  
N.N. Nedyalkov ◽  
R.G. Nikov ◽  
P.A. Atanasov ◽  
M.T. Alexandrov

2011 ◽  
Vol 415-417 ◽  
pp. 747-750
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

In order to study the effects of laser fluence on silver nanoparticles colloid, the silver nanoparticles colloid was prepared by pulsed laser ablation of silver target for 10min in distilled water at different laser fluence. The particles size,morphologies and absorption spectroscopy of the obtained nanoparticles colloid were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results shown that the average diameter of the silver nanoparticles prepared at the laser fluence of 4.2J/cm2 was the smallest (D=17.54nm), also, the distribution of particle size was narrowest (=36.86nm) and the morphologies were more homogeneous. It was confirmed that the nanoparticles size and shape could be controlled by pulsed laser ablation parameters.


2012 ◽  
Vol 500 ◽  
pp. 351-356 ◽  
Author(s):  
Zeng Qiang Li ◽  
Jun Wang ◽  
Qi Wu

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Isabel Mendivil Palma ◽  
Bindu Krishnan ◽  
Guadalupe Alan Castillo Rodriguez ◽  
Tushar Kanti Das Roy ◽  
David Avellaneda Avellaneda ◽  
...  

Platinum (Pt) nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL) technique in different liquids (acetone, ethanol, and methanol). Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Visible absorption spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document