Metastable Hexagonal Modifications of the NbCr2 Laves Phase as Function of Cooling Rate

2008 ◽  
Vol 1128 ◽  
Author(s):  
Jochen Aufrecht ◽  
Andreas Leineweber ◽  
Eric Jan Mittemeijer

AbstractIn as-cast ingots produced by arc-melting, several metastable polytypic modifications of NbCr2 were found additional to the cubic C15 phase stable at room temperature: C14, C36 and 6H-type structures, often highly faulted and/or intergrown. Strikingly, these phases had formed at locations of the specimen which had experienced a relatively low cooling rate, whereas the C15 phase was formed preferentially in regions which had experienced the highest cooling rates.

2007 ◽  
Vol 556-557 ◽  
pp. 371-374 ◽  
Author(s):  
Andreas Gällström ◽  
Björn Magnusson ◽  
Patrick Carlsson ◽  
Nguyen Tien Son ◽  
Anne Henry ◽  
...  

The influence of different cooling rates on deep levels in 4H-SiC after high temperature annealing has been investigated. The samples were heated from room temperature to 2300°C, followed by a 20 minutes anneal at this temperature. Different subsequent cooling sequences down to 1100°C were used. The samples have been investigated using photoluminescence (PL) and IV characteristics. The PL intensities of the silicon vacancy (VSi) and UD-2, were found to increase with a faster cooling rate.


2008 ◽  
Vol 1128 ◽  
Author(s):  
S. Voß ◽  
F. Stein ◽  
M. Palm ◽  
D. Grüner ◽  
G. Kreiner ◽  
...  

AbstractSingle-phase Fe-Nb and Co-Nb Laves phase alloys were produced by arc melting and levitation melting. By casting the levitation melted alloys in a preheated mould and subsequent slow cooling to room temperature, solid rods of 15 mm in diameter and about 100 mm length of the brittle Laves phases were obtained. Within the extended homogeneity ranges of the NbFe2 and NbCo2 Laves phases, the Vickers hardness was measured in dependence on composition. The results show that the hardness has a maximum at the stoichiometric composition in both systems, indicating defect softening. Nanoindentation measurements on a Co-Nb diffusion couple confirm the dependence of the hardness on composition. In addition, these measurements indicate that the crystal structure of the Laves phase polytype – cubic or hexagonal – seems to have no effect on the hardness. Indentation fracture toughness KIC-IF data for the different polytypes of the Laves phases were evaluated from the Palmquist cracks originating from the edges of the Vickers indentations.


Author(s):  
I. S. Loginova ◽  
M. V. Sazerat ◽  
N. A. Popov ◽  
A. V. Pozdniakov ◽  
A. N. Solonin

The paper studies specific features of the Al–2.5%Fe–1.5%Mn alloy microstructure formation depending on the cooling rate during casting and laser melting. As-cast microstructure analysis showed that with an increase in the cooling rate during crystallization from 0.5 to 940 K/s, the primary crystallization of the Al6(Mn,Fe) phase is almost completely suppressed with the non-equilibrium eutectic volume increasing to 43 %. The Al–2.5%Fe–1.5%Mn alloy microstructure after laser melting features by the presence of dendritic-type aluminum matrix crystals with an average cell size of 0.56 μm surrounded by an iron-manganese phase of eutectic origin with an average plate size of 0.28 μm. The primary crystallization of the Al6(Mn,Fe) phase is completely suppressed. Such a microstructure is formed at cooling rates of 1.1·104 to 2.5·104 K/s, which corresponds to the cooling rates implemented in additive technologies. Regions consisting of Al6(Mn,Fe) phase primary crystals formed by the epitaxial growth mechanism were revealed at the boundary between the track and the base metal and at the remelting boundary. The smaller the eutectic plates and dendritic cell located in the epitaxial layer, the more disperse the primary crystals in the remelting zone. The Al–2.5%Fe–1.5%Mn alloy after laser melting has high hardness at room temperature (93 HV) and good thermal stability after heating up to 300 °C (hardness slightly decreases to 85 HV), and its calculated yield strength is 227 MPa. Combined with the ultra-fine microstructure formed, high processibility during laser melting, hardness at room temperature, and high calculated yield strength, Al–2.5%Fe–1.5%Mn is a promising alloy for use in additive technologies.


Author(s):  
Fuming Chu ◽  
D. P. Pope ◽  
D. S. Zhou ◽  
T. E. Mitchell

A C15 Laves phase, HfV2+Nb, shows promising mechanical properties and here we describe the structure of its grain boundaries. The C15 Laves phase has a fcc lattice with a=7.4Å. An alloy of composition Hf14V64Nb22 (including a C15 matrix and a second phase of V-rich bcc solution) was made by arc-melting. The alloy was homogenized at 1200°C for 120h. Preliminary study concentrated on Σ3{<110>/70.53°} grain boundaries in the C15 phase using Philips 400T and CM 30 microscopes.The most-commonly observed morphology of Σ3{<110>/70.53°} grain boundaries in the C15 phase is a faceted boundary. A bright field image (BFI) of the faceted boundary and the corresponding diffraction patterns with the grain boundary edge-on are shown in Fig. 1(a). From the diffraction patterns using a <110> zone axis for both grains, it is obvious that this is a Σ3{<110>/70.53°} grain boundary. Crystallographic analysis shows that the Σ3{<110>/70.53°} grain boundaries selectively facet with the following relationships between the two grains: {111}1//{111}2, {112}1//{112}2, {111}1//{115}2, and {001}1//{221}2.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


2012 ◽  
Vol 535-537 ◽  
pp. 761-763 ◽  
Author(s):  
Yi Sheng Zhao ◽  
Xin Ming Zhang ◽  
Zhi Guo Gao

The law of phase change of bearing-B steel during continual cooling was studied by adopting dilatometer. The CCT curves of bearing-B steel were drawn, and the effects of RE on critical cooling rates were studied. The experimental results show that the start temperatures of martensite TM was decreased from 438 to 404°C. The critical cooling rate was simultaneously decreased from 33 to 15°C/s.


2012 ◽  
Vol 729 ◽  
pp. 356-360
Author(s):  
Endre Harkai ◽  
Tamás Hurtony ◽  
Péter Gordon

Microhardness and sound velocity were measured in case of differently prepared solder samples. The used Pb-10Sn solder samples were melted then cooled down applying different cooling rates. These procedures caused variant microstructure thus different microhardness and sound velocity values. The sound velocity was measured by means of scanning acoustic microscopy. Characterization of solder materials by acoustic microscopy gives the possibility to non-destructively estimate mechanical and reliability parameters of the given material.


1981 ◽  
Vol 49 (1) ◽  
pp. 369-382
Author(s):  
S. Fujikawa

Human erythrocytes suspended in buffered isotonic saline were frozen to the temperature of liquid nitrogen at various cooling rates of 3, 140, 700, 1800, 3500, 8000 and 11 500 deg. C/min. The membrane ultrastructure in the frozen state and the extent of haemolysis after thawing were examined at each cooling rate. As the cooling rates increased from 3 to 3500 deg. C/min, the extent of lysis gradually decreased, but further increase in cooling rates in excess of 8000 deg. C/min resulted in an abrupt increase of lysis. Membrane-associated vesicles devoid of intramembrane particles (IMPs) were formed in the erythrocyte membranes frozen at cooling rates slower than 1800 deg. C/min. The frequency and size of these vesicles were highly cooling-rate-dependent and they were no longer formed in the erythrocyte membranes frozen at cooling rates faster than 3500 deg. C/min. Another membrane ultrastructural change associated closely with the formation of intracellular ice crystals appeared at cooling rates faster than 8000 deg. C/min. The membrane regions in direct contact with intracellular ice crystals were physically damaged and had an appearance resembling worm-eaten spots. The erythrocytes frozen at a cooling rate of 3500 deg. C/min exhibited ultrastructural integrity of the membrane by avoiding the membrane changes caused by either slow or fast freezing. It is suggested, from the close relation between membrane ultrastructure and the extent of haemolysis, that the ultrastructural integrity of membrane in the frozen state is important for avoiding haemolysis after thawing, and that the membrane ultrastructural changes caused by both slow and fast freezing were responsible for the lysis after thawing.


2015 ◽  
Vol 817 ◽  
pp. 325-330
Author(s):  
Yu Hai Qu ◽  
Kai Jin Yang ◽  
Yan Tian Zhou ◽  
Yong Mao ◽  
Wei Zhang ◽  
...  

The sub-rapidly solidified Au-20Sn eutectic alloys were prepared by four different solidification pathways, such as, graphite mold conventional casting, graphite mold injection casting, copper mold injection casting, and water-cooled copper mold suction casting. The precipitating sequences of competing primary phases of sub-rapidly solidified Au-20Sn alloys with four different cooling rates were investigated. The results show that phase selection process is related to the cooling rates during sub-rapid solidification process. The primary ζ'-Au5Sn phase with developed dendrites precipitate at low cooling rate (2.4×10−4.2×102K/min) and the morphologies of the primary ζ'-Au5Sn change to rosette-like at higher cooling rate (9.0×103K/min). While the cooling rate reaches to 3.5×104K/min, the primary ζ'-Au5Sn phase can be suppressed but δ-AuSn phase will precipitate prior to the ζ'-Au5Sn phase. On the basis of the classical nucleation theory and transient nucleation theory, the process of competitive nucleation between the ζ'-Au5Sn phase and the δ-AuSn phase were analyzed for sub-rapid solidified Au-20Sn alloy. The theoretical calculations are consistent with the experimental investigations.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012196
Author(s):  
G A Politova ◽  
M A Ganin ◽  
A B Mikhailova ◽  
D A Morozov ◽  
K E Pankov ◽  
...  

Abstract Polycrystalline TbxDy1-xR0.1Fe2-zCoz (R = Nd, Pr, x = 0.2, 0.3; z = 0, 1.3) cubic Laves phase alloys with MgCu2-type structure were prepared by arc melting followed by homogenizing annealing. The crystal structure, magnetic properties, and magnetostriction have been investigated. Compounds with high values of magnetostrictive susceptibility were found in the temperature range 150-300 K. Compounds with partial substitution of cobalt for iron demonstrate a change in the sign of anisotropic magnetostriction. This work continues the search for magnetostrictive materials with inexpensive neodymium and praseodymium.


Sign in / Sign up

Export Citation Format

Share Document