A Novel Approach to Synthesis and Characterization of Biocompatible ZnO Nanoparticles

2008 ◽  
Vol 1138 ◽  
Author(s):  
N. Nag ◽  
J. Doak ◽  
R. K. Gupta ◽  
S. Mishra ◽  
P. K. Kahol ◽  
...  

AbstractZinc Oxide nanoparticles (ZnO) being biocompatible and chemically stable have great potential for bio-medical applications that includes anti-bacterial and mold prevention, air ventilation and purification, water purification, self cleaning and photosynthesis, and disease detection. Also ZnO is a wide band gap semiconductor and exhibits piezoelectric and pyroelectric properties, which makes it a perfect candidate for building electrochemically coupled sensors and transducers. With all these unique properties, ZnO has the potential to be very important nanomaterial in material research area. Therefore, research, development, and production of ZnO nanoparticles would make notable contributions to the field of nanotechnology. In this paper we report a novel approach for the fabrication of ZnO nanoparticles suspension in deionized water at room temperature using pulsed laser deposition (PLD) technique. Particle size was controlled by the number of shots of the laser beam used. Characterization of the nanoparticles has been done using UV-Visible spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). UV-Visible study confirmed the existence of ZnO nanoparticles showing a peak at around 300 nm which is consistent with the absorption spectra of standard ZnO nanoparticles. Presence of ZnO was reconfirmed by the excitation and emission spectra obtained from fluorescence spectroscopy. The excitation and emission peaks were found at 305 nm and 410 nm respectively, strongly suggesting the characteristic peaks for ZnO nanoparticles. Transmission electron microscope (TEM) photographs established that we have successfully prepared ZnO nanoparticles suspension with particle size ranging from 6 nm to 90 nm.

2014 ◽  
Vol 1081 ◽  
pp. 161-164
Author(s):  
Xue Mei Li ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

FeAu/ZnO nanoparticles were successfully synthesized by nanoemulsion process with the use of poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) as the surfactant. The characterization of the FeAu/ZnO nanoparticles was performed using X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy, showing that the polymer-laced nanoparticles reveal high crystallinity, excellent dispersibility and well defined optical performance. The process of solvent dispersion-collection of FeAu/ZnO nanoparticles indicates that the nanoparticles possess good magnetic property for applications.


2014 ◽  
Vol 1081 ◽  
pp. 138-141
Author(s):  
Xiao Liu ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

The polymer-laced Cu-ZnO nanoparticles were successfully synthesized by one-pot non-aqueous nanoemulsion method with the use of PEO-PPO-PEO as the surfactant, C14H29CH(OH)CH2OH as the reducing agent, octyl ether as the solvent, Zn (acac)2 and Cu (acac)2 as precursors. The Morphology and structure of nanoparticles were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). UV-visible absorption spectroscopy (UV-vis) and photoluminescence spectrometry (PL) were employed to valuate the optical properties of the nanoparticles. The Cu-ZnO nanoparticles with well defined optical properties are promising for optical, catalytic and biomedical applications.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2000 ◽  
Vol 72 (1-2) ◽  
pp. 209-219 ◽  
Author(s):  
Z. L. Wang ◽  
P. Poncharal ◽  
W. A. de Heer

Property characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechanical and electrical properties of individual nanotube-like structures by in situ transmission electron microscopy (TEM). The technique is powerful in a way that it can be directly correlated to the atomic-scale microstructure of the carbon nanotube with its physical properties, thus providing a complete characterization of the nanotube. Applications of the technique will be demonstrated in measurements of the mechanical properties, the electron field emission, and the ballistic quantum conductance of individual carbon nanotubes. A nanobalance technique is demonstrated that can be applied to measure the mass of a single tiny particle as light as 22 fg (1 f = 10-15 ).


NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550074 ◽  
Author(s):  
Chong Yang ◽  
Limei Tang ◽  
Qingsong Li ◽  
Ailing Bai ◽  
Yanqiu Wang ◽  
...  

Monodisperse colloidal zinc oxide ( ZnO ) nanospheres with a narrow size distribution were synthesized via a developed two-stage solution method. We controlled the size of the as-synthesized ZnO nanoparticles by varying the amount of ZnO /ethanol suspension added. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the diameter of the as-synthesized ZnO nanoparticles was in the range of 60–140 nm with a polydispersity index less than 5%. On high-resolution TEM images, we clearly observed that the ZnO nanospheres were actually composed of tiny ZnO subunits, several nanometers in size. Powder X-ray diffraction and TEM-selected area electron diffraction analysis showed that the spheres consisted of polycrystalline nanoparticles. The size of the subunits, which was confirmed by ultraviolet (UV)-visible spectroscopy, increased as the amount of ZnO /ethanol suspension added was decreased. A UV emission at about 374 nm was observed, and this emission of ZnO nanoparticles is found to depend on particle size due to the confinement effect. A red emission at about 651 nm, which has been reported for undoped ZnO , appeared due to the excess oxygen on the particles from O – H or C = O groups. The intensity of the red emission increased as the relative oxygen content increased. The formation mechanism of such ZnO nanospheres was also considered.


2007 ◽  
Vol 7 (2) ◽  
pp. 663-667
Author(s):  
Smritimoy Pramanik ◽  
Debasmita Das ◽  
Kaushik Das ◽  
Subhash Ch. Bhattacharya

Prussian Blue (PB) nanomolecular aggregates were prepared in a well-characterized, monodispersed biomimicking nanocavities formed by Aerosol OT (AOT) reverse micelle in H2O/AOT/heptane at different ω ([H2O]/[Surfactant]) employing coprecipitation technique. The formed nanomolecular aggregates of PB have been characterized by the UV-visible, Fourier Transformed Infrared (FTIR) spectroscopy as well as by Transmission Electron Microscopy (TEM) and Cyclic Voltammetric methods. Visible and FTIR spectroscopic measurements confirm the formation of PB nano aggregates. Experimental results reveal that the molar extinction coefficient of PB nanomolecular aggregates is different for two different regimes of ω of reverse micelles. TEM measurements show that the size of these reverse micellar entrapped nano aggregrates varied with hydration (ω). Studies on these nano sized particles indicate that Fe is present in a single mixed valence state along the Fe–C–N–Fe skeleton in PB and the half wave potential (E1/2) becomes more positive with increase in the size of the nano aggregates.


2001 ◽  
Vol 703 ◽  
Author(s):  
Ann M. Viano ◽  
Sanjay R. Mishra

ABSTRACTNanocomposite iron nitride based powders are known to have enhanced magnetic and other physical properties. To further explore their potential for application in various fields, we have performed a systematic study of the iron nitride - alumina and iron nitride - silica systems. Iron nitride powder of composition FexN (2 < x < 4), containing both Fe3N and Fe4N phases, was mechanically milled with Al2O3 or SiO2 powder for 4, 8, 16, 32, and 64 hours at the following compositions; (FexN)0.2(Al2O3)0.8, (FexN)0.6(Al2O3)0.4, (FexN)0.2(SiO2)0.8, and (FexN)0.6(SiO2)0.4. Differential thermal analysis and X-ray diffraction were performed to investigate thermal and structural transitions as a function of milling time. As the milling time is increased, the thermal peak corresponding to Fe4N is diminished, while the one corresponding to Fe3N is enhanced. These transitions are correlated with X-ray diffraction patterns. All XRD peaks broaden as a function of milling time, corresponding to smaller particle size. Transmission electron microscopy also reveals a decrease in particle size as the milling time in increased.


Sign in / Sign up

Export Citation Format

Share Document