Nanomeasurements of individual carbon nanotubes by in situ TEM

2000 ◽  
Vol 72 (1-2) ◽  
pp. 209-219 ◽  
Author(s):  
Z. L. Wang ◽  
P. Poncharal ◽  
W. A. de Heer

Property characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechanical and electrical properties of individual nanotube-like structures by in situ transmission electron microscopy (TEM). The technique is powerful in a way that it can be directly correlated to the atomic-scale microstructure of the carbon nanotube with its physical properties, thus providing a complete characterization of the nanotube. Applications of the technique will be demonstrated in measurements of the mechanical properties, the electron field emission, and the ballistic quantum conductance of individual carbon nanotubes. A nanobalance technique is demonstrated that can be applied to measure the mass of a single tiny particle as light as 22 fg (1 f = 10-15 ).

1999 ◽  
Vol 589 ◽  
Author(s):  
Z.L. Wang ◽  
P. Poncharal ◽  
W.A. De Heer ◽  
R.P. Gao

AbstractProperty characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechancial and electrical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing an one-to-one correspondence in structure-property characterization. Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes. A nanobalance technique is demonstrated that can be applied to measure the mass of a single tiny particle as light as 22 fg (1 f= 10−15).


2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


2008 ◽  
Vol 1142 ◽  
Author(s):  
Hideto Yoshida ◽  
Seiji Takeda ◽  
Tetsuya Uchiyama ◽  
Hideo Kohno ◽  
Yoshikazu Homma

ABSTRACTNucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.


2003 ◽  
Vol 776 ◽  
Author(s):  
Xicheng Ma ◽  
Yuanhua Cai ◽  
Xia Li ◽  
Ning Lun ◽  
Shulin Wen

AbstractHigh-quality cobalt-filled carbon nanotubes (CNTs) were prepared in situ in the decomposition of benzene over Co/silica-gel nano-scale catalysts. Unlike the previous reports, the catalysts needn't be pre-reduced prior to the forming of Co-filled CNTs, thus the advantage of this method is that Co-filled CNTs can be produced in one step, at a relatively low cost. Transmission electron microscopy (TEM) investigation showed that the products contained abundance of CNTs and most of them were filled with metallic nanoparticles or nanorods. High-resolution TEM (HRTEM), selected area electron diffraction (SAED) patterns and energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Co inside the nanotubes. The encapsulated Co was further identified always as high temperature alpha-Co phase with fcc structure, which frequently consists of twinned boundaries and stacking faults. Based on the experimental results, a possible growth mechanism of the Co-filled CNTs was proposed.


2017 ◽  
Vol 24 (4) ◽  
pp. 2045-2049 ◽  
Author(s):  
Xiao Zhang ◽  
Yang Yang ◽  
Fangfang Xu ◽  
Tie Li ◽  
Yuelin Wang

2013 ◽  
Vol 1525 ◽  
Author(s):  
Xuedong Bai ◽  
Zhi Xu ◽  
Peng Gao ◽  
Kaihui Liu ◽  
Wenlong Wang ◽  
...  

ABSTRACTIn-situ transmission electron microscopy (TEM) method is powerful in a way that it can directly correlate the atomic-scale structure with physical and chemical properties. We will report on the construction and applications of the homemade in-situ TEM electrical and optical holders. Electrical transport of carbon nanotubes and photoconducting response on bending of individual ZnO nanowires have been studied inside TEM. Oxygen vacancy electromigration and its induced resistance switching effect have been probed in CeO2 films.


Nanoscale ◽  
2018 ◽  
Vol 10 (14) ◽  
pp. 6261-6269 ◽  
Author(s):  
Zhenyu Zhang ◽  
Junfeng Cui ◽  
Bo Wang ◽  
Haiyue Jiang ◽  
Guoxin Chen ◽  
...  

A novel approach is developed using an eyebrow hair to pick up and transfer nanowires (NWs), in order to obtain in situ transmission electron microscope (TEM) images of the rebonding and self-matching of SFs at atomic resolution.


Microscopy ◽  
2019 ◽  
Author(s):  
He Zheng ◽  
Fan Cao ◽  
Ligong Zhao ◽  
Renhui Jiang ◽  
Peili Zhao ◽  
...  

Abstract In situ transmission electron microscopy has achieved remarkable advances for atomic-scale dynamic analysis in low-dimensional materials and become an indispensable tool in view of linking a material’s microstructure to its properties and performance. Here, accompanied with some cutting-edge researches worldwide, we briefly review our recent progress in dynamic atomistic characterization of low-dimensional materials under external mechanical stress, thermal excitations and electrical field. The electron beam irradiation effects in metals and metal oxides are also discussed. We conclude by discussing the likely future developments in this area.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 504
Author(s):  
Xu Tang ◽  
Qiu-Li Li ◽  
Bin Zhang ◽  
Peng Wang ◽  
Li-Xin Gu ◽  
...  

Monazite ((Ce, La, Nd, Th)PO4) is one of the widely used minerals for U–Th–Pb dating in geochronology. To better understand the possible effects of radiogenic Pb on the in situ dating method, a natural monazite U–Th–Pb standard sample (RW-1) was chemically and structurally characterized down to atomic scales by using the combination of Raman spectrum (RM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The experimental results revealed that radiogenic Pb exists as Pb2+ and substitutes for the Ce site in the monazite crystal lattice. Moreover, TEM imaging demonstrated that monazite is well crystalline revealed by an atomic structure in most areas except for a few tiny defects, which are likely attributed to alpha self-healing from an electronic energy loss of α particles. The characterization of the chemical state and occupancy of radiogenic Pb, and the distribution of Pb and Th in monazite at the nanoscale and atomic scale could provide insight for us to understand the mechanisms of the nanogeochronology.


2021 ◽  
Author(s):  
Chaolun Wang ◽  
Qiran Zou ◽  
Zhiheng Cheng ◽  
Jietao Chen ◽  
Chen Luo ◽  
...  

Abstract Controllable tailoring and understanding the phase-structure relationship of the 1T phase two-dimensional (2D) materials are critical for their applications in nanodevices. The in situ transmission electron microscope (TEM) could regulate and monitor the evolution process of the nanostructure of 2D material with atomic resolution. In this work, a controllably tailoring 1T-CrTe2 nanopore is carried out by the in situ TEM. A preferred formation of the 1T-CrTe2 border structure and nanopore healing process are studied at the atomic scale. The controllable tailoring of the 1T phase nanopore could be achieved by regulating the transformation of two types of low indices of crystal faces {10-10} and {11-20} at the nanopore border. Machine learning is applied to automatically process the TEM images with high efficiency. By adopting the deep-learning-based image-segmentation method and augmenting the TEM images specifically, the nanopore of the TEM image could be automatically identified and the evaluation result of DICE metric reaches 93.17% on test set. This work presents the unique structure evolution of 1T phase 2D material and the computer aided high efficiency TEM data analysis based on deep learning. The techniques applied in this work could be generalized to other materials for controlled nanostructure regulation and automatic TEM image analyzation.


Sign in / Sign up

Export Citation Format

Share Document