Growth and Characterization of Organic Polymeric Thin Films From Isopropanol by PECVD.

2009 ◽  
Vol 1242 ◽  
Author(s):  
J. O. Martínez-Gutiérrez ◽  
G. Romero-Paredes ◽  
R. Peña-Sierra ◽  
A. Ávila-García ◽  
G. Juárez-Díaz

ABSTRACTPolymerized organic thin films were synthesized on a variety of substrates by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique using isopropanol as precursor. Hydrogen peroxide, ammonium hydroxide, and iodine dissolved in isopropanol were used as dopants and chlorobenzene as copolymerization precursor. The structural, optical and electrical properties of the films were studied as functions of the dopant type and concentration.The polymeric films were characterized by variable angle ellipsometry (VAE), atomic force microscopy (AFM), Fourier Transform Infrared spectroscopy (FTIR), ultraviolet-visible transmission spectroscopy and photoluminescence. The electrical film behavior was explored by the four points probe method.The growth rate, refractive index, optical bandgap, chemical structure and resistivity of the films strongly depend on the concentration and type of dopant added. The AFM microphotographs showed smooth surfaces with RMS roughness less than 10 nm. The optical bandgap values of the films were in the range of 2.6 to 3.26 eV, the resistivity was in the order of 103 – 104 ohm-cm. The photoluminescence response of the polymerized films was obtained in the visible region, by exciting with a UV laser.

2012 ◽  
Vol 405 (5) ◽  
pp. 1463-1478 ◽  
Author(s):  
Daniele Passeri ◽  
Marco Rossi ◽  
Emanuela Tamburri ◽  
Maria Letizia Terranova

Author(s):  
J.A. Zasadzinski ◽  
R. Viswanathan ◽  
D.K. Schwartz ◽  
J. Garnaes ◽  
L. Madsen ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


2021 ◽  
Author(s):  
Somayeh Asgary ◽  
Amir Hoshang Ramezani ◽  
Zhaleh Ebrahimi Nejad

Abstract WS2 flakes have been grown successfully on SiO2 substrate via chemical vapor (CVD) deposition method by reduction and sulfurization of WO3 using Ar/ H2 gas and sulfur evaporated from solid sulfur powder. The prepared samples were characterized by optical microscopy (OM), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). Large domain WS2 monolayers are obtained by extending the growth time. The perfect triangular single-crystalline WS2 flakes with an average length of more than 35 µm were achieved. The sharp PL peak (∼1.98 eV) and two distinct Raman peaks (E2g and A1g) with a ∼ 71.5 cm-1 peak split indicating that relatively high quality WS2 crystals with a regular triangle shape can be synthesized. Higher growth time shows larger triangular-shaped of WS2.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Antonín Fejfar ◽  
Petr Klapetek ◽  
Jakub Zlámal ◽  
Aliaksei Vetushka ◽  
Martin Ledinský ◽  
...  

ABSTRACTMicroscopic characterization of mixed phase silicon thin films by conductive atomic force microscopy (C-AFM) was used to study the structure composed of conical microcrystalline grains dispersed in amorphous matrix. C-AFM experiments were interpreted using simulations of electric field and current distributions. Density of absorbed optical power was calculated by numerically solving the Maxwell equations. The goal of this study is to combine both models in order to simulate local photoconductivity for understanding the charge photogeneration and collection in nanostructured solar cells.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


Author(s):  
José M. Barandiarán ◽  
Iñaki Orue ◽  
M.L. Fdez-Gubieda ◽  
A. García Prieto

Sign in / Sign up

Export Citation Format

Share Document