Structure, Composition and Superconductivity of High Tc Tl–Ba–Ca–Cu–O System

1989 ◽  
Vol 156 ◽  
Author(s):  
Yasuhiko Syono ◽  
Masae Kikuchi ◽  
Satoru Nakajima ◽  
Teruo Suzuki ◽  
Takeo Oku ◽  
...  

ABSTRACTBulk high Tc superconductors of Tl2Ba2Can−1CunO2n+4 (n=1−4) and TlBa2Can−1CunO2n+3 (n=2−5) were synthesized, and their structures, chemical compositions and superconducting properties were studied by means of X-ray powder diffraction, electron probe microanalysis, transmission electron microscopy, and electrical and magnetic measurements. Superconducting critical temperatures are discussed in terms of average Cu valence and Cu-O bond length within the plane which vary with the number of Cu layers.

2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


1996 ◽  
Vol 11 (10) ◽  
pp. 2406-2415 ◽  
Author(s):  
R. Gopalan ◽  
T. Rajasekharan ◽  
T. Roy ◽  
G. Rangarajan ◽  
V. Ganesan ◽  
...  

YBa2Cu3O7 (123) samples with varying Y2BaCuO5 (211) concentrations (0 mol%, 20 mol%, 28 mol%, and 50 mol%) were synthesized by the melt-growth process. Microstructural characterizations were done using x-ray diffraction (XRD), optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). It was found that 123 platelet width, crack width between the platelets, and 211 particle size decreased systematically with increasing 211 concentration. TEM study showed that there is a critical radius of curvature (rc ≤ 0.2 μm-0.3 μm) of the 123/211 interface where defects/contrasts of strain field start to appear, and these defects are believed to be responsible for pinning the magnetic flux. Microhardness measurements showed that Vickers hardness (VHN) increases with increasing 211 content. Critical current density (Jc) values obtained from magnetization measurements using a SQUID magnetometer were found to increase in melt-grown samples by the addition of 211 content.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 256 ◽  
Author(s):  
Zicheng Ling ◽  
Weiping Chen ◽  
Weiye Xu ◽  
Xianman Zhang ◽  
Tiwen Lu ◽  
...  

The influence of a Mo addition on the interfacial morphologies and corrosion resistances of novel Fe-Cr-B alloys in molten aluminum at 750 °C was systematically investigated using scanning electron microscopy, X-ray diffractometer, electron probe microanalysis, and transmission electron microscopy. The results indicated that Mo could not only strengthen the matrix but also facilitate the formation of borides. Furthermore, the microstructures of Mo-rich M2B boride changed from a local eutectic net-like structure to a typical coarse dendritic structure and a blocky hypereutectic structure with increasing Mo addition. This was true of the blocky Mo-rich M2B boride, rod-like Cr-rich M2B boride and the corrosion products, which had a synergistic effect on retarding of the diffusion of molten aluminum. Notably, the corrosion resistance of the Fe-Cr-B-Mo alloy, with an 8.3 wt.% Mo addition, was 3.8 times higher than that of H13 steel.


1997 ◽  
Vol 3 (S2) ◽  
pp. 669-670
Author(s):  
Solórzano I.G. ◽  
Kotani T. ◽  
Tuller H.L. ◽  
Van der Sande J.B.

It is currently well recognized that oxides are able to accommodate deviations from stoichiometry (1) and great advances in this understanding have been achieved by using transmission electron microscopy (TEM), particularly through lattice imaging and electron diffraction techniques (2). The physical properties of non-stoichiometric oxides are strongly influenced by their exact composition and for this reason they represent a class of materials with increasing and novel properties that are put to use in, for example, oxygen sensors and high-Tc superconductors. On the other hand, in electroceramic materials, such as TiO2, grain boundary structure and chemistry are important to be characterized in detail since these variables are responsible for the electric activity.Rutile (TiO2) can accommodate relatively large deviations from stoichiometry (TiOx with 2.0≥x≤ 1.75) by the crystallographic shear (CS) mechanism (1). The formation of CS planes is effectively a two-step process which involves the ordering of oxygen vacancies on a crystallographic plane and on their elimination by a shear of the lattice.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Lidia Rednic ◽  
Iosif Deac ◽  
Eugen Dorolti ◽  
Marin Coldea ◽  
Vasile Rednic ◽  
...  

AbstractX-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and magnetic measurements as a function of applied magnetic field and temperature for In1−x MnxSb (0.05≤x≤0.2) system are reported. Magnetic measurements performed at high and small magnetic field in ZFC and FC indicate the coexistence of ferromagnetic In1−x MnxSb solid solution and two types of magnetic cluster: ferromagnetic MnSb and ferrimagnetic Mn2Sb. XPS valence band and Mn 2p core level spectra have confirmed the presence of MnSb and Mn2Sb phases. TEM images show some manganese antimonide phase microinclusions with dimension between (30–40) nm.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2005 ◽  
Vol 20 (9) ◽  
pp. 2340-2347 ◽  
Author(s):  
H. Wei ◽  
X.F. Sun ◽  
Q. Zheng ◽  
H.R. Guan ◽  
Z.Q. Hu ◽  
...  

The pseudo NiAl binary phase was formed in a nickel-based superalloy by pack cementation. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, electron probe microanalysis, and positron annihilation technique were used to characterize the pseudo NiAl binary phase. Based on reasonable assumptions, the chemical interdiffusivities of the pseudo NiAl binary phase were then assessed by means of the modified Wagner’s method. The results showed that the chemical interdiffusivities of the pseudo NiAl binary phase were about two orders of magnitude lower than those reported by others. The analysis indicated that the change in thermodynamic properties due to the additions of the microalloying atoms originally present in a superalloy could be responsible mainly for a decrease in chemical interdiffusivities.


1990 ◽  
Vol 5 (8) ◽  
pp. 1620-1624
Author(s):  
A. K. Singh ◽  
M. A. Imam ◽  
K. Sadananda ◽  
S. B. Qadri ◽  
E. F. Skelton ◽  
...  

Several high Tc compounds containing Tl (thallium) were prepared starting from different initial compositions. Superconducting properties and the structure were determined for each sample. Electron diffraction and transmission electron microscopy showed the existence of polytypic high Tc compounds with the same a- and b-axes but different c-axis values. The c-axis appears to increase approximately in integral multiples of 0.15 nm with varying composition and is associated with the insertion of Cu–Ca or Cu–Tl layers in each unit cell. Several random stacking faults were also noted, which give rise to diffuse streaking in the electron diffraction pattern.


Author(s):  
Richard S. Thomas ◽  
Mabel I. Corlett

Ash patterns produced by oxygen plasma microincineration(OPM) of thin-sectioned biological materials and examined with the transmission electron microscope (TEM) can show unambiguously the distribution of mineral substances in the specimen with resolutions down to 100 Å. The chemical nature of the mineral is not demonstrated, however. Electron-probe X-ray microanalysis (EXM), on the other hand, can determine precisely the nature of the mineral in ashgd or unashed sections but its spatial resolution is limited to 1000-10,000 A at best. Also its sensitivity of analysis on unashed specimens is limited by intolerance of the specimen to high beam intensities. Using both TEM and EXM together on ash patterns of suitable specimens can overcome their independent spatial and chemical limitations. Furthermore, use of OPM produces a highly stable mineral specimen for EXM, thereby improving sensitivity.


Sign in / Sign up

Export Citation Format

Share Document