Structural and superconducting properties of melt-grown Y–Ba–Cu–O superconductors

1996 ◽  
Vol 11 (10) ◽  
pp. 2406-2415 ◽  
Author(s):  
R. Gopalan ◽  
T. Rajasekharan ◽  
T. Roy ◽  
G. Rangarajan ◽  
V. Ganesan ◽  
...  

YBa2Cu3O7 (123) samples with varying Y2BaCuO5 (211) concentrations (0 mol%, 20 mol%, 28 mol%, and 50 mol%) were synthesized by the melt-growth process. Microstructural characterizations were done using x-ray diffraction (XRD), optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). It was found that 123 platelet width, crack width between the platelets, and 211 particle size decreased systematically with increasing 211 concentration. TEM study showed that there is a critical radius of curvature (rc ≤ 0.2 μm-0.3 μm) of the 123/211 interface where defects/contrasts of strain field start to appear, and these defects are believed to be responsible for pinning the magnetic flux. Microhardness measurements showed that Vickers hardness (VHN) increases with increasing 211 content. Critical current density (Jc) values obtained from magnetization measurements using a SQUID magnetometer were found to increase in melt-grown samples by the addition of 211 content.

Author(s):  
X.W. Sun ◽  
C.X. Xu ◽  
B.J. Chen ◽  
Y. Yang

Zinc oxide (ZnO) microtube has been fabricated by heating the mixture of ZnO and graphite powders in the atmosphere. The ZnO microtubes showed perfect hexagonal profiles with bell-mouth or normal hexagonal tops. Both X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) demonstrated that the product was composed of ZnO with typical hexagonal structure grown predominantly along (002) direction. The growth process was interpreted by means of vaporliquid-solid mechanism combining with the evaporation of metallic zinc.


2011 ◽  
Vol 233-235 ◽  
pp. 2289-2293
Author(s):  
Pin Jiang Li ◽  
Wen Jun Fa ◽  
Yan Ge Zhang ◽  
Bao Jun Huang ◽  
Yi Dong Zhang

Hairball-like bismuth trisulphide microcrystallines has been successfully prepared via one step solvothermal process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The morphologies of the Bi2S3 microcrystallines were influenced by reaction time, temperature, the mole ratio of the reactants and concentration of starting materials, and the growth process has been proposed. The electrochemical behavior of Bi2S3 was investigated using the cyclic voltammetry.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2722-2727
Author(s):  
Y. J. XING ◽  
D. P. YU ◽  
Z. H. XI ◽  
Z. Q. XUE

We demonstrate the synthesis of zinc oxide microshells by thermal evaporation of ZnO and Zn powders. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) observations reveal that the products are ZnO microshells with hollow cores, of which the wall thickness is about several hundred nanometers. The possible growth process is discussed.


2014 ◽  
Vol 609-610 ◽  
pp. 76-81 ◽  
Author(s):  
Ling Wei Hu ◽  
Hua Tian ◽  
Yu Xia Zhang ◽  
Kun Lu ◽  
Ai Hua Jing

ZnO/graphene composites has been synthesized using a one-pot hydrothermal method at moderate temperature of 90°C. Hydrothermal growth was done in an aqueous solution consisting of 20 mL graphene oxide (GO) solution (0.25 mg/mL) with equimolar of zinc acetate [ZAc, Zn (CH3COO)2·2H2 and hexamethylenetetramine (HMTA, C6H12N4). The as-synthesized composites was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results of the characterization indicate that GO was reduced to graphene in the growth process, while ZnO in the form of quantum dots (QDs) or nanoparticles embedded in the graphene sheet. The composites synthesized by this method will have potential applications in bioimaging, gas sensing, optoelectrical materials and devices. The photoluminescence (PL) of the conposites was also investigated.


2009 ◽  
Vol 1170 ◽  
Author(s):  
Alexey M Glushenkov ◽  
Vladimir I. Stukachev ◽  
Mohd Faiz Hassan ◽  
Gennady G. Kuvshinov ◽  
Hua Kun Liu ◽  
...  

AbstractWe have recently reported a solid-state, mass-quantity transformation from V2O5 powders to nanorods via a two-step approach [1]. In this paper we present detailed investigation of the growth process using x-ray diffraction, scanning/transmission electron microscopy and electron spin resonance. The growth of nanorods at intermediate stages has been examined. Oxidation, surface energy minimization and surface diffusion play important roles in the growth mechanism.


1989 ◽  
Vol 4 (5) ◽  
pp. 1065-1071 ◽  
Author(s):  
Y. L. Chen ◽  
J. V. Mantese ◽  
A. H. Hamdi ◽  
A. L. Micheli

Thin films of Y–Ba–Cu–O and Yb–Ba–Cu–O, 0.5–1.5 μm in thickness, were deposited onto (211) and (100) SrTiO3 single crystal substrates by metalorganic deposition (MOD). After deposition the samples were annealed either by conventional furnace annealing or rapid thermal annealing (RTA). The microstructures of these films were then characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive x-ray spectrometry (EDS). Grain size of the annealed films varied from 0.25 to 1.0 μm. Improved superconducting properties were found for the RTA samples, compared to furnace annealing, and were attributed to larger grain size, little strontium diffusion into the thin films from the substrate, and highly preferred orientation of the 1:2:3 phase.


2004 ◽  
Vol 839 ◽  
Author(s):  
R.M. Wang ◽  
Y.F. Chen ◽  
Y. Y. Fu ◽  
H. Zhang ◽  
C. Kisielowski

ABSTRACTNovel Fe2O3 nanowires have been successfully synthesized by a simple oxidation process of pure iron. The microstructure of the Fe2O3 nanowires have been systematically investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM). The investigated materials are found to be stoichiometric rhombohedral α-Fe2O3 with typical diameters of 20–80 nm and lengths up to 20 μm. In addition to known single crystal Fe2O3 nanowires, a great amount of novel bicrystalline nanowires were found with ellipsoidal heads. Investigations indicate that most of the bicrystalline nanowires are twins and their orientation relationship is obtained to be (−1, 1, 10)M//(−1, 1, 10)T, [110]M//[-1-10]T. High resolution TEM with numerical reconstruction of the electron exit wave was used to investigated the atomic structure of the micro-twins. Their growth mechanism is briefly discussed on the basis of solid phase growth process.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document