Diffusion and Interdiffusion in Multilayered Semiconductor Systems

1989 ◽  
Vol 163 ◽  
Author(s):  
A. Ourmazd ◽  
Y. Kim ◽  
M. Bode

AbstractWe apply quantitative chemical mapping techniques to study thermal interdiffusion and ion-implantation induced intermixing at single heterointerfaces at the atomic level. Our results show thermal interdiffusion to be strongly depth dependent. This is related to the need for the presence of native point defects (interstitials and vacancies) to bring about interdiffusion. Since their initial concentration in the bulk is negligible, the point defects must be injected at the surface and transported to the interface for interdiffusion to occur. In the case of ion-implanted samples, we find the passage of a single energetic ion through a sample at 77 K causes significant intermixing, even when the sample receives no subsequent thermal treatment.

2015 ◽  
Vol 51 (70) ◽  
pp. 13462-13465 ◽  
Author(s):  
Yutaka Maeda ◽  
Yuya Takehana ◽  
Michio Yamada ◽  
Mitsuaki Suzuki ◽  
Tatsuya Murakami

Alkylation and subsequent thermal treatment of SWNTs induces a new bright PL peak in the NIR region.


1992 ◽  
Vol 279 ◽  
Author(s):  
L. Laanab ◽  
C. Bergaud ◽  
M. M. Faye ◽  
J. Faure ◽  
A. Martinez ◽  
...  

ABSTRACTComputer simulations in conjunction with TEM experiments have been used to test the different models usually adopted in the literature to explain the formation of “End Of Range”(EOR) defects which appear after annealing of preamorphized silicon layers. Only one survives careful experimental investigations involving Si+, Ge+, Sn+ amorphization at RT and LNT. The “excess-interstitial” model appears relevant at least for a semi-quantitative explanation of the source of point-defects which after recombination and agglomeration, lead to the formation of these defects. This model may be used for the numerical optimization of conditions for the production of high performances ullra-shallow junctions.


2011 ◽  
Vol 509 ◽  
pp. S658-S661 ◽  
Author(s):  
Lars Ismer ◽  
Anderson Janotti ◽  
Chris G. Van de Walle

1990 ◽  
Vol 216 ◽  
Author(s):  
M.A. Berding ◽  
A. Sher ◽  
A.-B. Chen

ABSTRACTNative point defects play an important role in HgCdTe. Here we discuss some of the relevant mass action equations, and use recently calculated defect formation energies to discuss relative defect concentrations. In agreement with experiment, the Hg vacancy is found to be the dominant native defect to accommodate excess tellurium. Preliminary estimates find the Hg antisite and the Hg interstitial to be of comparable densities. Our calculated defect formation energies are also consistent with measured diffusion activation energies, assuming the interstitial and vacancy migration energies are small.


2006 ◽  
Vol 527-529 ◽  
pp. 717-720 ◽  
Author(s):  
Sashi Kumar Chanda ◽  
Yaroslav Koshka ◽  
Murugesu Yoganathan

A room temperature PL mapping technique was applied to establish the origin of resistivity variation in PVT-grown 6H SiC substrates. A direct correlation between the native defect-related PL and resistivity was found in undoped (V-free) samples. In vanadium-doped samples with low vanadium content, the resistivity showed a good correlation with the total PL signal consisting of contributions from both vanadium and native point defects. Well-known UD1 and UD3 levels were revealed by low-temperature PL spectroscopy. Some correlation was observed between these low-temperature PL signatures and the resistivity distribution.


2018 ◽  
Vol 6 (24) ◽  
pp. 11496-11506 ◽  
Author(s):  
Paul Pistor ◽  
Thomas Burwig ◽  
Carlo Brzuska ◽  
Björn Weber ◽  
Wolfgang Fränzel

We present the identification of crystalline phases by in situ X-ray diffraction during growth and monitor the phase evolution during subsequent thermal treatment of CH3NH3PbX3 (X = I, Br, Cl) perovskite thin films.


Sign in / Sign up

Export Citation Format

Share Document