The Fabrication and Magnetic Shielding Properties of Melt Cast Bi‐Sr‐Ca‐Cu‐O

1989 ◽  
Vol 169 ◽  
Author(s):  
R.J. Rayne ◽  
L.E. Toth ◽  
B.A. Bender ◽  
S.H. Lawrence ◽  
R.J. Soulen ◽  
...  

AbstractMagnetic shields for SQUID applications were successfully fabricated using high Tc superconducting BSCCO. To produce shields with appropriate superconducting properties and close dimensional control, it was necessary to develop new processing techniques. Shields were produced by casting liquid BSCCO into molds, heat treating and machining. This technique is applicable to fabricating other types of superconducting devices requiring bulk superconductors with complex shapes and close dimensional control.

1991 ◽  
Vol 6 (3) ◽  
pp. 467-472 ◽  
Author(s):  
R.J. Rayne ◽  
L.E. Toth ◽  
B.A. Bender ◽  
S.H. Lawrence ◽  
M.M. Miller ◽  
...  

Magnetic shields for SQUID applications were successfully fabricated using high Tc superconducting Bi–Sr–Ca–Cu–O (BSCCO). In order to produce shields with adequate superconducting properties and close dimensional control, it was necessary to develop several new processing techniques. Shields were produced by casting liquid BSCCO into molds, heat treating, and machining. A series of BSCCO alloys with different compositions were cast from the molten state into metal molds and subsequently heat treated to render the castings superconducting. The heat-treating cycles were studied with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and dilatometer measurements. The phases and microstructures after various heat-treating cycles were monitored by x-ray diffraction (XRD), optical microscopy, and scanning electron microscopy (SEM). Superconducting properties were measured after various stages of heat treatment and machining. Prototype magnetic shields were machined from bulk castings and found to perform successfully. The most significant factor in shield quality was the nominal composition of the shield, which was shown by transmission electron microscopy (TEM) to affect the grain boundary chemistry.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


1982 ◽  
pp. 177-193 ◽  
Author(s):  
G. F. Manes ◽  
C. Susini ◽  
P. Tortoli ◽  
C. Atzeni

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 92 ◽  
Author(s):  
Nur Mohd Yusuf ◽  
Mohd Awang Kechik ◽  
Hussein Baqiah ◽  
Chen Soo Kien ◽  
Lim Kean Pah ◽  
...  

YBa2Cu3O7−δ (Y-123) bulk superconductors with the addition of (0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 wt.%) SnO2 nanoparticles were synthesised via a thermal treatment method. The influence of SnO2 addition on the superconducting properties by means of critical temperature, Tc, AC susceptibility, phase formation and microstructures, including its elemental composition analysis, were studied. Sharp superconducting transition, ∆Tc, and diamagnetic transition were obtained for all SnO2-added samples. It was observed that sample x = 0.4 with a Y-123 phase percentage of 95.8% gives the highest Tc, smallest ∆Tc, and the sharpest diamagnetic transition in the normalised susceptibility curves. The microstructure also showed an excess of Sn precipitates on the sample’s surface at x = 0.8 and above. As such, the best superconducting properties were observed at x = 0.4 SnO2 addition inside the Y-123 host sample.


2015 ◽  
Vol 28 (3) ◽  
pp. 035004 ◽  
Author(s):  
Miao Wang ◽  
Wan-Min Yang ◽  
Jia-Wei Li ◽  
Zhong-Ling Feng ◽  
Peng-Tao Yang

2017 ◽  
Vol 891 ◽  
pp. 483-488 ◽  
Author(s):  
Daniela Volochová ◽  
Vitaliy Antal ◽  
Jozef Kováč ◽  
Pavel Diko

The influence of Sm addition on the microstructure and superconducting properties of Y-Ba-Cu-O (YBCO) bulk superconductors has been studied. Precursor powders YBa2Cu3O7-δ (Y-123), Y2O3 and CeO2 were enriched with different amounts of SmBa2Cu3Oy (Sm-123) or Sm2O3 powders with the aim to increase critical current density, Jc,by introducing additional pinning centers. YBCO bulk superconductors with SmBa2Cu3Oy (Y123-Sm) or Sm2O3 (Y123-SmO) powder addition were prepared by the optimized top seeded melt growth process in the form of single grains. Microstructure analysis revealed that Sm2O3 addition leads to a higher amount of smaller Y2BaCuO5 (Y-211) particles, what is related to high critical current densities (Jc ~ 7 x 104 A/cm2) of the YBCO samples with Sm2O3 addition in low magnetic fields. The effect of Sm addition in the form of SmBa2Cu3Oy as well as Sm2O3 powder on Y2BaCuO5 particle size, critical temperature, Tc, and critical current density, Jc, is reported.


Geophysics ◽  
1970 ◽  
Vol 35 (3) ◽  
pp. 461-470 ◽  
Author(s):  
J. P. Lindsey

The availability of seismic digital field recording equipment has made possible new processing techniques which achieve significant reflection data enhancement. Typical of the processes that are now used routinely are deconvolution, autocorrelation and crosscorrelation, Fourier transformation, and spectral alteration. A recording fidelity that reduces errors to 1 part in 10,000 has provided the motive for developing and using these techniques. An additional capability of digital field equipment is the recording of amplifier gain information to a precision of 0.1 percent. This appears to provide a motive for developing multichannel processes which expand further our processing capabilities beyond the essentially single channel ones now in use. The present study evaluates the multichannel processing potential afforded by present day seismic digital field recording systems. The evaluation is based on measurement and computation of the effects of channel performance deviations. Each component of the field recording system (geophone, cable, amplifier, filters, sampling skew) separately, and the system as a whole, are evaluated in this context. Results of the study indicate that whereas any given channel possesses a dynamic range of 80 db, channel‐to‐channel variations establish a dynamic range of only 15 db. The 15 db range sets a serious limit on the performance of multichannel processes and points up the need for additional improvements in field hardware capabilities.


2002 ◽  
Vol 739 ◽  
Author(s):  
Meg Abraham ◽  
Peter Fuqua ◽  
David P. Taylor ◽  
William W. Hansen ◽  
Henry Helvajian ◽  
...  

ABSTRACTThe use of lasers to create intricate three-dimensional and buried structures [1] in photostructural glass has been well demonstrated at The Aerospace Corporation over the past four years. In these instances the glass used (Foturan™, made by the Schott Group) forms a silver nucleation sites on exposure to intense UV laser light via a two-photon process. Subsequent annealing causes a localized crystal growth to form a meta-silicate phase which can be etched in dilute hydrofluoric acid at rates of 20 to 50 times that of the unprocessed glass. We are now in the process of experimenting with another formulation of photosensitive glass, also pioneered by Corning Glass Works, that behaves differently during the bake process. In the second case, a photoexposure and bake process creates a silver-halide crystal and forms an adjacent void in the glass. A second photoexposure and bake allows for the migration of more silver into the void creating patterned formations of silver nano-wires [2]. Recent experiments with this type of glass have shown that the manipulation of the size and density of the embedded nano-wires as well as the overall pattern of the clusters can be controlled using direct-write exposure to laser processing.


Sign in / Sign up

Export Citation Format

Share Document