New Processing Techniques for the Creation of Micro-Opto-Mechanical Machines and Photonic Devices Embedded in Glass

2002 ◽  
Vol 739 ◽  
Author(s):  
Meg Abraham ◽  
Peter Fuqua ◽  
David P. Taylor ◽  
William W. Hansen ◽  
Henry Helvajian ◽  
...  

ABSTRACTThe use of lasers to create intricate three-dimensional and buried structures [1] in photostructural glass has been well demonstrated at The Aerospace Corporation over the past four years. In these instances the glass used (Foturan™, made by the Schott Group) forms a silver nucleation sites on exposure to intense UV laser light via a two-photon process. Subsequent annealing causes a localized crystal growth to form a meta-silicate phase which can be etched in dilute hydrofluoric acid at rates of 20 to 50 times that of the unprocessed glass. We are now in the process of experimenting with another formulation of photosensitive glass, also pioneered by Corning Glass Works, that behaves differently during the bake process. In the second case, a photoexposure and bake process creates a silver-halide crystal and forms an adjacent void in the glass. A second photoexposure and bake allows for the migration of more silver into the void creating patterned formations of silver nano-wires [2]. Recent experiments with this type of glass have shown that the manipulation of the size and density of the embedded nano-wires as well as the overall pattern of the clusters can be controlled using direct-write exposure to laser processing.

2002 ◽  
Vol 739 ◽  
Author(s):  
Meg Abraham ◽  
Inmaculada Gomez-Morilla ◽  
Mike Marsh ◽  
Geoff Grime

ABSTRACTThe use of photons to create intricate three-dimensional and buried structures [1] in photo-structurable glass has been well demonstrated at several institutions [2]. In these instances the glass used whether it be Foturan™, made by the Schott Group or a similar product made by Corning Glass, forms a silver nucleation sites on exposure to intense UV laser light via a two-photon process. Subsequent annealing causes a localized crystal growth to form a meta-silicate phase which can be etched in dilute hydrofluoric acid at rates of 20 to 50 times that of the unprocessed glass. The same formulation of glass can be “exposed” using a particle beam to create the nucleation site. In the case of particle beam exposure, experiments have shown that the mechanisms that cause this initial nucleation and eventual stochiometric transformation, after annealing, depend largely on the beam energy.


Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


2011 ◽  
Vol 26 (5) ◽  
pp. 495-498
Author(s):  
Kun-Peng CAI ◽  
Jing-Bo SUN ◽  
Bo LI ◽  
Ji ZHOU

1982 ◽  
pp. 177-193 ◽  
Author(s):  
G. F. Manes ◽  
C. Susini ◽  
P. Tortoli ◽  
C. Atzeni

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Jamyson Oliveira Santos ◽  
Brunna da Silva Firmino ◽  
Matheus Santos Carvalho ◽  
Jean de Pinho Mendes ◽  
Lucas Novaes Teixeira ◽  
...  

Imaging examinations play an important role in the diagnosis of sialolithiasis, whose symptoms are initially confounded with other diseases. The objective of the present case report is to highlight imaging and processing techniques as well as image analysis for the preoperative assessment and planning of surgical interventions and adequate treatment of massive sialoliths. A 35-year-old male patient presented complaining of pain in the submandibular region and purulent secretions from a lingual caruncle with slightly increased volume in the region. Imaging examinations were ordered as follows: cone beam computed tomography, ultrasonography, and three-dimensional reconstruction, including clinical evaluation. A final diagnosis of sialolithiasis was established. Surgery was indicated and carried out by using a lateral transcervical approach for complete resection of the gland, which was based on the calculation of the total volume of the sialolith, thus increasing the surgery’s success.


2000 ◽  
Author(s):  
George P. Vakanas ◽  
Ampere A. Tseng ◽  
Paul Winer

Abstract Keeping up with the highlight topic of this year’s ASME MEMS Symposium 2000 “Beyond Traditional Barriers”, this paper reports on operational principles, scaling, modeling and fabrication issues for magneto-fluidic MEMS. The research is an integral part of the on-going Laser Fabrication Program at Arizona State University. It is the premise of this paper that novel MEMS devices and applications can evolve by integrating materials with unique properties in new micro device designs (Grimes, 1997). Laser processing techniques, for 5μ-thick magnetic films on silicon, have already been reported elsewhere by the same authors (Vakanas et al, 2000). The focus of the current work is on expanding the applications envelop of laser-fabricated microstructures on magnetic thick films to enable new high-volume semiconductor and MEMS devices. Research results are presented in the form of preliminary laser-based rapid prototyping and fabrication (RP&F) as well as comparative taxonomies of operational principles and applications in microfluidics and micromagnetics, leading to the conceptual design of micro and meso -scale MHD and MTF devices. The paper concludes with the on-going research activity and remaining challenges.


2011 ◽  
pp. 130-174
Author(s):  
Burak Ozer ◽  
Tiehan Lv ◽  
Wayne Wolf

This chapter focuses on real-time processing techniques for the reconstruction of visual information from multiple views and its analysis for human detection and gesture and activity recognition. It presents a review of the main components of three-dimensional visual processing techniques and visual analysis of multiple cameras, i.e., projection of three-dimensional models onto two-dimensional images and three-dimensional visual reconstruction from multiple images. It discusses real-time aspects of these techniques and shows how these aspects affect the software and hardware architectures. Furthermore, the authors present their multiple-camera system to investigate the relationship between the activity recognition algorithms and the architectures required to perform these tasks in real time. The chapter describes the proposed activity recognition method that consists of a distributed algorithm and a data fusion scheme for two and three-dimensional visual analysis, respectively. The authors analyze the available data independencies for this algorithm and discuss the potential architectures to exploit the parallelism resulting from these independencies.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000288-000293
Author(s):  
Darko Belavic ◽  
Marko Hrovat ◽  
Gregor Dolanc ◽  
Kostja Makarovic ◽  
Marina Santo Zarnik ◽  
...  

Advanced micro- or macro-systems are in some cases made with multilayer ceramic technology. Low-Temperature Co-fired Ceramic (LTCC) technology is considered as one of the more suitable technologies for the fabrication of ceramic micro-systems that integrate screen-printed, thick-film electronic components as well as three-dimensional buried structures, for example, cavities and channels. One of the applications is a ceramic combustor. The chemical energy of the fuel is converted into thermal energy in a chemical micro-combustor through a burning process, while the accompanying high temperatures and, frequently, high pressures impose harsh conditions on the combustor structure. Therefore, the combustor must be carefully designed not only from the functional, thermal and chemical points of view, but also with respect to the mechanical strength. The combustor device was prepared by laminating of Du Pont 951PX LTCC green tapes. The fabricated 3D LTCC structures with buried cavities and channels including two inlets (for fuel and air), the evaporator for the fuel, the mixing system of the channels (for mixing the evaporated fuel and air), the distribution channels and eight microburners were realized. The main parts are eight micro-burners realized as buried cavities. In the burners a platinum-based catalyst was deposited to assist the oxidation, i.e., the burning, of the methanol with the air. Thickfilm, platinum-based heaters and temperature sensors are incorporated within the structure. The device was tested with different flow rates of liquid methanol (1 ml/h to 5 ml/h) and air (7 l/h to 15 l/h). The obtained temperatures were between 250°C and 450°C.


Sign in / Sign up

Export Citation Format

Share Document