A New General Method for the Determination of Optical Properties of Amorphous Silicon Films

1990 ◽  
Vol 192 ◽  
Author(s):  
G. Amato ◽  
L. Boarino ◽  
F. Fizzotti ◽  
C. Manfredotti

ABSTRACTWe propose to apply a new method to model the optical response of amorphous silicon thin films. This method presents the advantage of having a good physical insight. On the other hand, although the model has been originally tested on different materials like a-Si, a-Ge and a-GaAs, we show that it is also sensitive to small differences like those that can exist between intrinsic and doped a-Si:H.

2011 ◽  
Vol 383-390 ◽  
pp. 6980-6985
Author(s):  
Mao Yang Wu ◽  
Wei Li ◽  
Jun Wei Fu ◽  
Yi Jiao Qiu ◽  
Ya Dong Jiang

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.


2007 ◽  
Vol 515 (7-8) ◽  
pp. 3910-3913 ◽  
Author(s):  
Yong Liu ◽  
Gang Xu ◽  
Chenlu Song ◽  
Wenjian Weng ◽  
Piyi Du ◽  
...  

2009 ◽  
Vol 41 (7) ◽  
pp. 573-576
Author(s):  
Yong Liu ◽  
Lihong Ni ◽  
Jun Bo Liu ◽  
Qiying Liu ◽  
Chenlu Song ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 195-198
Author(s):  
Seung Jae Moon

The formation and growth mechanism of polysilicon grains in thin films via laser annealing of amorphous silicon thin films are studied. The complete understanding of the mechanism is crucial to improve the thin film transistors used as switches in the active matrix liquid crystal displays. To understand the recrystallization mechanism, the temperature history and liquidsolid interface motion during the excimer laser annealing of 50-nm thick amorphous and polysilicon films on fused quartz substrates are intensively investigated via in-situ time-resolved thermal emission measurements, optical reflectance and transmittance measurements at near infrared wavelengths. The front transmissivity and reflectivity are measured to obtain the emissivity at the 1.52 μm wavelength of the probe IRHeNe laser to improve the accuracy of the temperature measurement. The melting point of amorphous silicon is higher than that of crystalline silicon of 1685 K by 100-150 K. This is the first direct measurement of the melting temperature of amorphous silicon thin films. It is found that melting of polysilicon occurs close to the melting point of crystalline silicon. Also the optical properties such as reflectance and transmittance are used to determine the melt duration by the detecting the difference of the optical properties of liquid silicon and solid silicon.


Sign in / Sign up

Export Citation Format

Share Document