On the Flow and Creep Strength of Power Law Materials Containing Rigid Reinforcements

1990 ◽  
Vol 194 ◽  
Author(s):  
Ming Y. He

AbstractInvestigation of the flow properties of materials containing rigid reinforcements has been prompted by various technological challenges concerned with high specific strength composites. The materials of interest range from metallic materials such as Al alloys, to ceramic materials such as Si3N4 and also include the intermetallics: TiAl and MoSi2. The reinforcements are typically A12O3 and SiC. The strengths of interest may be the flow strength at ambient temperature or the creep strength. The present analysis constitutes an attempt to provide estimates of either the flow or creep strength for matrices that exhibit power law deformation.

2016 ◽  
Vol 680 ◽  
pp. 116-120 ◽  
Author(s):  
Gyu Hyeon Park ◽  
Jeong Tae Kim ◽  
Hae Jin Park ◽  
Young Seok Kim ◽  
Hae Joon Jeong ◽  
...  

2014 ◽  
Vol 709 ◽  
pp. 399-402
Author(s):  
Jung Han Song ◽  
Seo Gou Choi

Aluminum (Al) alloys have great potential as ideal structural materials because of their high specific strength and stiffness. However, Al alloys exhibit poor ductility at room temperature. Enhancing the formability is a very important and challenging problem to both automotive and manufacturing engineers. In this study, the electro-plastic effects, which is first discovered in 1960s, of 5xxx Al alloy sheets are investigated to improve the formability. To begin with, a test system is built up to carry out the tensile test with heavy electric current flowing through the specimen. The evolutions of the flow stress and the electric resistivity are obtained using this test system. The significant decrease in the flow stress caused by the heavy flowing through current is observed.


2012 ◽  
Vol 1487 ◽  
Author(s):  
C. R. M. Afonso ◽  
P. L. Ferrandini ◽  
R. Caram

AbstractThe β titanium alloys are highly attractive metallic materials for biomedical applications due to their high specific strength, high corrosion resistance and excellent biocompatibility, including low elastic modulus. The aim of this work is the evaluation of hardening mechanism through phase separation in β Ti-35Nb-7Zr-5Ta (TNZT) and Ti-35Nb-7Ta (TNT) alloys. Ingots (50 g) of TNZT and TNT alloys were arc-furnace melted in Ar(g)atmosphere. XRD using synchrotron radiation together with TEM and HRTEM analysis showed the coexistence of two separated phases (β and β’) with similar crystalline structures and slightly different lattice parameters in TNZT and TNT alloys. It was detected a heterogeneous microstructure alternating nanosized dark and bright regions (∼10 nm) with different compositions (Nb-rich β and Ta-Zr-rich β’).In aged condition (400ºC/4h), TNZT and TNT alloys undergoes coherent spinodal decomposition of β phase into two solid solution phases with coherent interface, different compositions and elastic strain associated with nanometric domains of Nb-rich β and Ta-(Zr)-rich β’ phases.


2018 ◽  
Vol 24 (6) ◽  
pp. 1
Author(s):  
Khansa Daood AlShamari ◽  
Ihsan Kadhom AlNaimi ◽  
Raad Hameed Majid

Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size   20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications. Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and optical micrographs examinations were carried out to analyze, compare, and evaluate the addition of reinforced particles. The results of this investigation appeared that the 7.5% of ceramic particles addition give highest values of the hardness and wear resistance.      


2007 ◽  
Vol 539-543 ◽  
pp. 1707-1712 ◽  
Author(s):  
Suk Bong Kang ◽  
Hyoung Wook Kim ◽  
Sang Su Jeong ◽  
Jae Woon Kim

Magnesium alloys have been known as the best lightweight metallic materials for various applications of electronic equipments and automobile parts due to high specific strength and stiffness. The needs for wrought magnesium alloys have been increased for the application to structural parts in the form of sheets and bars. However, magnesium has a hexagonal closed-packed (HCP) crystal structure with a limited number of operative slip systems at room temperature, and its formability is restricted to mild deformation. The improvement of the formability of magnesium sheets for real applications is important. In order to increase formability of magnesium sheets at elevated temperature, one promising way is a grain refinement.


2022 ◽  
Vol 1049 ◽  
pp. 62-68
Author(s):  
Aleksandr S. Binchurov ◽  
Yuri Gordeev ◽  
Vladimir Kuleshov ◽  
Andrew Dvoryansky ◽  
Alexei Gribanov ◽  
...  

Composite materials obtained through powder metallurgy methods are increasingly applied in various industries, particularly in aviation and rocket and space equipment which use their high specific strength, resistance to high temperatures and other properties. Producers of composite materials use various metallic and non-metallic materials (fibres and powders) as fillers [1-2]. For example, the high plasticity (moldability) of aluminium powders allows utilizing them as a matrix material in moulding of composites using various methods of rolling, extrusion, and intense plastic deformation [3-5]. However, the widespread use of chip as a raw material for the production of composites is hampered by the complexities in obtaining powders with granules of the necessary shape and size.


2010 ◽  
Vol 25 (12) ◽  
pp. 2287-2291 ◽  
Author(s):  
B.A. Sun ◽  
K.P. Cheung ◽  
J.T. Fan ◽  
J. Lu ◽  
W.H. Wang

The fabrication and properties of fiber metallic glass laminates (FMGL) composite composed of Al-based metallic glasses ribbons and fiber/epoxy layers were reported. The metallic glass composite possesses structural features of low density and high specific strength compared to Al-based metallic glass and crystalline Al alloys. The material shows pronounced tensile ductility compared to monolithic bulk metallic glasses.


Author(s):  
J. E. O'Neal ◽  
K. K. Sankaran

Al-Li-Cu alloys combine high specific strength and high specific modulus and are potential candidates for aircraft structural applications. As part of an effort to optimize Al-Li-Cu alloys for specific applications, precipitation in these alloys was studied for a range of compositions, and the mechanical behavior was correlated with the microstructures.Alloys with nominal compositions of Al-4Cu-2Li-0.2Zr, Al-2.5Cu-2.5Li-0.2Zr, and Al-l.5Cu-2.5Li-0.5Mn were argon-atomized into powder at solidification rates ≈ 103°C/s. Powders were consolidated into bar stock by vacuum pressing and extruding at 400°C. Alloy specimens were solution annealed at 530°C and aged at temperatures up to 250°C, and the resultant precipitation was studied by transmission electron microscopy (TEM).The low-temperature (≲100°C) precipitation behavior of the Al-4Cu-2Li-0.2Zr alloy is a combination of the separate precipitation behaviors of Al-Cu and Al-Li alloys. The age-hardening behavior at these temperatures is characteristic of Guinier-Preston (GP) zone formation, with additional strengthening resulting from the coherent precipitation of δ’ (Al3Li, Ll2 structure), the presence of which is revealed by the selected-area diffraction pattern (SADP) shown in Figure la.


2019 ◽  
pp. 116-122
Author(s):  
V. V. Stepanov ◽  
A. D. Kashtanov ◽  
S. U. Shchutsky ◽  
A. N. Agrinsky ◽  
N. I. Simonov

We consider the results of studies on the choice of material of the lower radial bearing of the pump, designed to circulate the coolant lead – bismuth. The circulation of the liquid coolant is provided by a vertical axial pump having a “long” shaft. In this design it is necessary to provide for the lower bearing the lubrication carried out with lead – bismuth coolant. Having analyzed the operating conditions of the axial pump, we decided to carry out the lower bearing in accordance with the scheme of a hydrodynamic sliding bearing. The materials of friction pairs in such a bearing must withstand the stresses arising from the operation of the pump, as well as the aggressive conditions of the coolant. Non-metallic materials – ceramics and carbon-based composite materials – were selected basing on the study of literature data for experimental research on the corrosion and heat resistance in the lead-bismuth environment. 


Sign in / Sign up

Export Citation Format

Share Document