GaAs(100) Surface Modifications at Elevated Temperatures, Studied By In-Situ Spectroscopic Ellipsometry

1990 ◽  
Vol 202 ◽  
Author(s):  
Huade Yao ◽  
Paul G Snyder ◽  
John A Woollam

ABSTRACTSpectroscopic ellipsometric (SE) measurements of GaAs (100) were carried out in an ultrahigh vacuum (UHV) chamber, without arsenic overpressure, at temperatures ranging from room temperature (RT) to ∼610°C. Surface changes induced at elevated temperatures were monitored by in-situ spectroscopic ellipsometry. The SE data clearly displayed in real time the process of desorption of the GaAs-surface-oxide overlayer at ∼580°C. In addition, changes in the near-surface region were observed before and after the oxide desorption. The near-subsurface region (top 50–100 Å) became less optically dense after being heated to 540°C or higher. For comparison, a pre-arsenic-capped molecular-beam-epitaxy (MBE)-grown GaAs surface was also studied. After the arsenic cap was evaporated off at ∼350°C, this surface remained smooth and clean as it was heated to higher temperatures.

1991 ◽  
Vol 222 ◽  
Author(s):  
Huade Yao ◽  
Paul G. Snyder

ABSTRACTIn-situ spectroscopic ellipsometry (SE) was applied to monitor GaAs (100) surface changes induced at elevated temperatures inside an ultrahigh vacuum (UHV) chamber (<1×10−9 torr base pressure, without As overpressure). The real time data showed clearly the evolution of the native-oxide desorption at ∼577°C, on a molecular-beam-epitaxy (MBE)-grown GaAs (100) surface. In addition, surface degradation was found before and after the oxide desorption. A clean and smooth surface was obtained from an arsenic-capped, MBE-grown GaAs sample, after the arsenic coating was evaporated at ∼350 °C inside the UHV. Pseudodielectric functions <ε>GaAs, from 1.6 eV to 4.5 eV, were obtained through the SE measurements, from this oxide-free surface, at temperatures ranging from room temperature (RT) to ∼610 °C. These <ε> data were used as reference data to develop an algorithm for determining surface temperatures from in-situ SE measurements, thus turning the SE instrument into a sensitive optical thermometer.


2007 ◽  
Vol 7 (12) ◽  
pp. 4378-4390 ◽  
Author(s):  
Anuradha Somayaji ◽  
Ramoun Mourhatch ◽  
Pranesh B. Aswath

Tribofilms with thickness ranging from 100–200 nm were developed in-situ during wear tests using a zinc dialkyl dithiophosphates (ZDDP) and fluorinated ZDDP (F-ZDDP). The influence of the antioxidant alkylated diphenyl amine on the formation and properties of these tribofilm is examined. Results indicate that the thickness of the tribofilms formed when F-ZDDP is used is always thicker than the tribofilm formed with ZDDP. In addition, in the presence of antioxidants the tribofilm thickness is increased. The hardness of these tribofilms in the absence of the antioxidants is significantly higher at the near surface region (0–30 nm) when compared to the films formed in the presence of antioxidant. Nanoscratch tests conducted to examine the abrasion resistance of the tribofilms also indicate that the tribofilms formed by F-ZDDP are more resistant to scratch compared to films formed by ZDDP. In the presence of antioxidant, tribofilms formed by F-ZDDP are significantly thicker while both films behave in a similar fashion in nanoscratch tests. Transmission electron microscopy of the wear debris formed during the tests were examined and results indicate the nucleation and growth of nanoparticles of Fe3O4 with an approximate size of 5–10 nm embedded within an otherwise amorphous tribofilm.


Transport ◽  
2012 ◽  
Vol 27 (2) ◽  
pp. 196-205 ◽  
Author(s):  
Libor Beneš

The main aim of this work was a study of the microstructure transformations with the residual stress formation that is induced by rolling contact friction and adhesive wore in the wheel–rail system. Several small railsurface samples, we term them as the ‘chips’, and a piece of wheel sample were chosen for the analyses of the surface changes on the wheel–rail surface. A multitude of different experiments were carried out in order to analyse the microstructure changes at the surface and the near-surface region of the material samples and, thus, to contribute to the understanding of the complex wheel–rail rolling contact phenomena – and its degradation mechanisms. The formation of nano-structured martensite and carbides on the rail and wheel surface causes the extremely high microhardness valuees and the strong corrosion resistance of the so called White Etching Layers (WEL).


1993 ◽  
Vol 63 (1-4) ◽  
pp. 1-8 ◽  
Author(s):  
G.N. Maracas ◽  
J.L. Edwards ◽  
D.S. Gerber ◽  
R. Droopad

1986 ◽  
Vol 75 ◽  
Author(s):  
U. K. Chakrabarti ◽  
S. J. Pearton ◽  
H. Barz ◽  
A. R. Vonneida ◽  
K. T. Short ◽  
...  

AbstractAℓN deposited by D.C. triode sputtering and spin-on, phosphorus-doped glass (PSG) layers on GaAs and InP were investigated as encapsulants. These films have similar expansion coefficients to both GaAs and InP, minimizing the amount of strain induced in the near-surface region of the underlying wafer. We have quantified this effect by direct measurements of the stress in the films and by using secondary ion mass spectrometry profiling to measure the redistribution of Cr and Fe in encapsulated GaAs and InP respectively during high temperature processing. The dopant redistribution is considerably less for the AℓN and PSG films compared to the more conventional SiO2 and Si3N4 layers. The interaction of the films with the substrate at elevated temperatures is minimal as determined by Auger profiling and the electrical properties of the surface after removal of the encapsulants. The composition of the films remains essentially constant after annealing, as measured by Rutherford backscattering, and the thickness uniformity over large wafer diameters (2″) can be excellent with close control of the deposition parameters. The activation characteristics of low dose, Si-implanted layers in GaAs using either PSG or AℓN are comparable to those obtained using capless annealing or SiO2 or Si3N4 encapsulation.


1983 ◽  
Vol 27 ◽  
Author(s):  
D. I. Potter ◽  
M. Ahmed ◽  
S. Lamond

ABSTRACTThe chemical and microstructural changes caused by the direct implantation of solutes into metals are examined. The particular case involving Al+-ion implantation into nickel is treated in detail. Chemical composition profiles measured using Auger spectroscopy and Rutherford backscattering, and average near-surface chemical composition measured using an analytical electron microscope, are compared with model calculations. The microstructures that develop during implantation are investigated using transmission electron microscopy. For low fluences implanted near room temperature, these microstructures contain dislocations and dislocation loops. Dislocation loops, dislocations, and voids result from implantations at temperatures near 500°C. Higher fluences at these elevated temperatures produce precipitates when the composition of implanted solute lies in a two-phase region of the phase diagram. Implanted concentrations corresponding to intermetallic compounds produce continuous layers of these compounds. Room temperature, as compared to elevated temperature, implantation may produce the same phases at the appropriate concentrations, e.g. β'-NiAl, or different phases, depending on the relative stability of the phases involved.


1959 ◽  
Vol 32 (3) ◽  
pp. 696-700
Author(s):  
M. J. Voorn ◽  
J. J. Hermans

Abstract There are strong reasons to believe that on heating a crosslinked rubber crosslinks are broken and new ones formed. This has been established by the well-known work on stress relaxation of Tobolsky and his school, and others. In the following we will discuss some experiments which give further support to these views, both of a qualitative and quantitative nature. In the first place, we carried out a few preliminary experiments on stress relaxation at elevated temperatures. This stress relaxation may be due to either or both of two effects : (a) a displacement of the crosslinks, (b) a change in the number of crosslinks per unit of volume (crosslinking density p). A measure of ρ can be obtained from the equilibrium degree of swelling at room temperature, and this gives us a means of comparing changes of ρ in a stretched sample with those occurring in the unstretched state. To this end commercial rubber strips were heated in the stretched state in the absence of oxygen at three different temperatures (80, 106, 122° C) for times varying from 2 to 72 hours. The degree of stretch, i.e., the length of the stretched rubber divided by the original length was α=1 (unstretched) in one series, and α=3 in a second series. The initial stress τ0 (for α=3) and the final stress τ at the end of the heating period were read from the stress-strain diagrams, taking into account that for the heat-treated strips there was a permanent set. In other words, τ is the stress needed to give the heat-treated sample at room temperature a length 3 times the length of the original untreated sample; the ratio τ/τ0 is therefore essentially the ratio between the moduli of elasticity. The cross-linking densities ρ0 and ρ before and after heating were derived from swelling experiments (for details see the sections on swelling).


CORROSION ◽  
1981 ◽  
Vol 37 (12) ◽  
pp. 700-711 ◽  
Author(s):  
P. Fabis ◽  
R. Heidersbach ◽  
C. Brown ◽  
T. Rockett

Abstract Oxide scales formed on metals at elevated temperatures may be different, both chemically and structurally, from the scales on the metal once it has cooled to room temperature. This paper discusses Raman spectroscopy instrumentation for the in-situ identification of scales formed on metal surfaces exposed to gaseous environments. The results of an experimental program to characterize scales formed on two commercial iron-chromium alloys, AISI 446 and 502, in air and oxygen environments are also presented.


Author(s):  
V. A. Kharchenko

The processes of gettering of fast-diffusing metal impurities and structure defects in silicon, mainly used in the production of integrated circuits, power high-voltage devices, nuclear-doped silicon, are considered. The getters based on structural defects and gas-phase getters based on chlorine-containing compounds are analyzed. It is noted that for the formation of getters on the basis of structural defects, it is necessary to create internal sources for generation of dislocations and formation of precipitate — dislocation clusters. It is shown that dislocations are generated in the mouths of microfractures, which then form a sedentary dislocation grid on the non-working side of the plates. In the second case, defects are created in the area of the plate adjacent to the active layer of the electronic component. The process of creating an internal getter is based on the decomposition of a supersaturated solid oxygen solution in silicon, due to which a complex defect medium consisting of various precipitate-dislocation clusters is formed in the crystal. The packing defect as oxide precipitate with a cloud of Frank’s loops is formed. Two variants of creating an internal getter are considered — first is associated with the distillation of an oxygen impurity from the near-surface region of the plate, the second is associated with a fine adjustment of the distribution of vacancies along the plate thickness. The analysis of the influence of the getter as the defect structure reducing the magnitude of mechanical stress of the beginning of the generation of dislocations, which ultimately can determine the mechanical strength of the silicon wafer.This paper also considers the mechanism of gas-phase medium impurities and defects gettering with the addition of chlorine-containing compounds. It is shown that at elevated temperatures, due to the interaction of silicon atoms with chlorine in the near-surface region of the plate, it is possible to create vacancies that penetrate the sample volume with some probability. As a result, the case DСv > 0, DCi £ 0 is realized, that leads to a change in the composition of microdefects and their density. The examples of practical application of heat treatment in chlorine-containing atmosphere silicon wafer during application of the oxide film, in the case of the target the need for dissolution of the microdefects and of the withdrawal of fast diffusing impurities from the crystal volume, and to prevent the formation of generation-recombination centers in the manufacturing process of devices and in a nuclear doping silicon.


Sign in / Sign up

Export Citation Format

Share Document