scholarly journals The getters in silicon

Author(s):  
V. A. Kharchenko

The processes of gettering of fast-diffusing metal impurities and structure defects in silicon, mainly used in the production of integrated circuits, power high-voltage devices, nuclear-doped silicon, are considered. The getters based on structural defects and gas-phase getters based on chlorine-containing compounds are analyzed. It is noted that for the formation of getters on the basis of structural defects, it is necessary to create internal sources for generation of dislocations and formation of precipitate — dislocation clusters. It is shown that dislocations are generated in the mouths of microfractures, which then form a sedentary dislocation grid on the non-working side of the plates. In the second case, defects are created in the area of the plate adjacent to the active layer of the electronic component. The process of creating an internal getter is based on the decomposition of a supersaturated solid oxygen solution in silicon, due to which a complex defect medium consisting of various precipitate-dislocation clusters is formed in the crystal. The packing defect as oxide precipitate with a cloud of Frank’s loops is formed. Two variants of creating an internal getter are considered — first is associated with the distillation of an oxygen impurity from the near-surface region of the plate, the second is associated with a fine adjustment of the distribution of vacancies along the plate thickness. The analysis of the influence of the getter as the defect structure reducing the magnitude of mechanical stress of the beginning of the generation of dislocations, which ultimately can determine the mechanical strength of the silicon wafer.This paper also considers the mechanism of gas-phase medium impurities and defects gettering with the addition of chlorine-containing compounds. It is shown that at elevated temperatures, due to the interaction of silicon atoms with chlorine in the near-surface region of the plate, it is possible to create vacancies that penetrate the sample volume with some probability. As a result, the case DСv > 0, DCi £ 0 is realized, that leads to a change in the composition of microdefects and their density. The examples of practical application of heat treatment in chlorine-containing atmosphere silicon wafer during application of the oxide film, in the case of the target the need for dissolution of the microdefects and of the withdrawal of fast diffusing impurities from the crystal volume, and to prevent the formation of generation-recombination centers in the manufacturing process of devices and in a nuclear doping silicon.

2019 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vyacheslav A. Kharchenko

Gettering of rapidly diffusing metallic impurities and structural defects in silicon which is the main material for IC fabrication, high-power high-voltage devices and neutron doped silicon has been studied. Structural defect based getters and gas phase getters based on chlorine containing compounds have been analyzed. Formation of structural defect based getters requires producing intrinsic sources of dislocation generation and precipitate/dislocation agglomerate formation. We show that dislocations are generated at microcrack mouths and form a low-mobility dislocation network at inactive wafer sides. In the latter case the defects are generated in the wafer region adjacent to the active layer of the electronic component. The generation of intrinsic getters is based on the decomposition of the supersaturated oxygen solid solution in silicon which favors the formation of a complex defect system in silicon that consists of various precipitate/dislocation agglomerates. Stacking faults also form, i.e., oxide precipitates with Frank’s dislocation loop clouds. Two intrinsic getter formation methods have been considered: one is related to oxygen impurity drain from the wafer surface region and the other implies accurate control of vacancy distribution over wafer thickness. We have analyzed the effect of getters as defect structures on the reduction of the mechanical stress required for dislocation generation onset which may eventually determine the mechanical strength of silicon wafers. The mechanism of impurity and defect gettering by gas phase medium with chlorine-containing compound additions has been considered. We show that silicon atom interaction with chlorine in the surface wafer region at high temperatures may cause the formation of vacancies which may penetrate to the specimen bulk with some probability. This leads to the case ∆Сv > 0 and ∆Ci ≤ 0, which changes the composition and density of the microdefects. Examples have been given for practical use of heat treatment of silicon wafers in a chlorine-containing atmosphere during oxide film application with the aim to dissolve microdefects, drain rapidly diffusing impurities from crystal bulk and prevent the formation of generation/recombination centers during device fabrication and silicon neutron doping.


1986 ◽  
Vol 75 ◽  
Author(s):  
U. K. Chakrabarti ◽  
S. J. Pearton ◽  
H. Barz ◽  
A. R. Vonneida ◽  
K. T. Short ◽  
...  

AbstractAℓN deposited by D.C. triode sputtering and spin-on, phosphorus-doped glass (PSG) layers on GaAs and InP were investigated as encapsulants. These films have similar expansion coefficients to both GaAs and InP, minimizing the amount of strain induced in the near-surface region of the underlying wafer. We have quantified this effect by direct measurements of the stress in the films and by using secondary ion mass spectrometry profiling to measure the redistribution of Cr and Fe in encapsulated GaAs and InP respectively during high temperature processing. The dopant redistribution is considerably less for the AℓN and PSG films compared to the more conventional SiO2 and Si3N4 layers. The interaction of the films with the substrate at elevated temperatures is minimal as determined by Auger profiling and the electrical properties of the surface after removal of the encapsulants. The composition of the films remains essentially constant after annealing, as measured by Rutherford backscattering, and the thickness uniformity over large wafer diameters (2″) can be excellent with close control of the deposition parameters. The activation characteristics of low dose, Si-implanted layers in GaAs using either PSG or AℓN are comparable to those obtained using capless annealing or SiO2 or Si3N4 encapsulation.


Author(s):  
J. Kameda ◽  
T. E. Bloomer ◽  
Y. Sugita ◽  
A. Ito ◽  
S. Sakurai

The effect of thermal ageing at 870 °C for 8000 h in air on the microstructure/composition and mechanical properties (RT and 870 °C) has been studied in aluminized CoCrAlY coatings consisting of four layered structure (region I-IV) of advanced gas turbine blades. Thermal ageing led to a little oxidation/nitridation and a decrease in the Al content in a near surface region I. In a coating region II, coarse Cr rich σ precipitates formed during the thermal ageing. Thermally aged internal (III) and near interface (IV) coating regions showed extensive dispersion of σ and/or Al/Ni rich β/α eutectic precipitates. Small punch tests at RT and 870 °C in air have shown that the coating regions I and II of imaged and aged blades indicated easier formation of brittle cracks regardless of the composition change. The ductility of the regions III and IV at RT and 870 °C, and the low cycle fatigue life of the region III were reduced by the thermal ageing. The mechanical degradation at elevated temperatures in the aged coating regions III and IV is elucidated by taking into account the microstructure/composition evolution and environmental oxidizing effects.


1986 ◽  
Vol 90 ◽  
Author(s):  
T.-M. Kao ◽  
T. W. Sigmon

ABSTRACTIn this work, we report the use of Rutherford backscattering(RBS) measurements and computer simulations to provide accurate stoichiometry information and semi-quantitative defect densities for the near surface region of Hg1−xCdxTe (MCT). The accuracy of the Hg1−xCdx Te x-values determined by our method is found to be comparable to other commonly used methods, such as FTIR or the electron microprobe. The data obtained as structural defects from RBS channeling measurements are in basic agreement with other techniques, such as chemical etching. The sensitivity of the channeling measurement to uniformly distributed dislocations is found to be about 107−108 cm−2, however, for dislocations forming subgrains, the detectable level of dislocation comes to 105 – 106 cm−2. The depth profiles of lattice disorder resulting from ion implantation into MCT are also extracted from RBS channeling measurements using these simulation programs. These profiles are found to closely match the calculated profiles for the displaced atoms calculated using an implantation modeling program (TRIM). We also report on the use of channeling-in-grazing-angle-out technique for evaluating the stoichiometry of the first few monolayers of the MCT surface.


1990 ◽  
Vol 202 ◽  
Author(s):  
Huade Yao ◽  
Paul G Snyder ◽  
John A Woollam

ABSTRACTSpectroscopic ellipsometric (SE) measurements of GaAs (100) were carried out in an ultrahigh vacuum (UHV) chamber, without arsenic overpressure, at temperatures ranging from room temperature (RT) to ∼610°C. Surface changes induced at elevated temperatures were monitored by in-situ spectroscopic ellipsometry. The SE data clearly displayed in real time the process of desorption of the GaAs-surface-oxide overlayer at ∼580°C. In addition, changes in the near-surface region were observed before and after the oxide desorption. The near-subsurface region (top 50–100 Å) became less optically dense after being heated to 540°C or higher. For comparison, a pre-arsenic-capped molecular-beam-epitaxy (MBE)-grown GaAs surface was also studied. After the arsenic cap was evaporated off at ∼350°C, this surface remained smooth and clean as it was heated to higher temperatures.


1990 ◽  
Vol 5 (11) ◽  
pp. 2296-2304 ◽  
Author(s):  
Steven M. Valone ◽  
Mitchell Trkula ◽  
Joseph R. Laia

A combined numerical and experimental investigation into the behavior of diamond (111) surfaces in plasma CVD reactors is presented. Numerically, semiempirical molecular orbital methods are used as a model of diamond (111) surfaces represented by a 20-atom carbon cluster plus surface species. The abstraction of hydrogen atoms by gas-phase hydrogen atoms, the coverage dependence of the heat of formation for submonolayers of CH3 and C2H groups coadsorbed with H, and the energy change for abstraction of H atoms from the surface by various radicals in the gas phase are examined. No barrier to abstraction is found, steric effects in achieving clusters of CH3 groups are large, and C2H and atomic oxygen are found to be the most energetically favored for removal of adsorbed H. Experimentally, relative concentrations of atomic H in the near-surface region as a function of added O2 mole fraction were measured. A weak dependence on O2 concentration is observed, but does not appear to be significant enough to account for observed changes in growth rate. This suggests that other radical species be investigated for their contribution to diamond film growth.


2000 ◽  
Vol 12 (22) ◽  
pp. 4687-4697 ◽  
Author(s):  
K Szot ◽  
W Speier ◽  
M Pawelczyk ◽  
J Kwapuliñski ◽  
J Hulliger ◽  
...  

Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document