Chromium Underlayer Effects in Longitudinal Magnetic Recording

1991 ◽  
Vol 232 ◽  
Author(s):  
M. F. Doerner ◽  
P.-W. Wang ◽  
S. M. Mirzarnaani ◽  
D. S. Parker

ABSTRACTFor media used in longitudinal recording, an epitaxial relationship is observed between the Cr and Co-alloy layers, and generally a strong Cr <100> texture is desirable for c-axis in-plane orientation of the Co alloy. In this study, Cr underlayer thickness, temperature and Cr deposition pressure were varied while keeping the magnetic layer (CoPtCr) deposition process constant. Films were deposited on circumferentially textured NiP, polished NiP and chemically elched NiP substrates as well as Si wafers in order to study the effects of surface finish on the crystallographic orientation of the Cr underlayer. The uniformity of the magnetic properties and in-plane anisotropy (orientation ratio) of the disks were measured using Kerr magnetrometry. The in-plane anisotropy was found to be related to the Cr deposition conditions and the surface texture of the NiP. Signal to noise ratio results and a possible mechanism for the origin of the in-plane anisotropy are discussed.

MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2661-2668
Author(s):  
Horia Gavrila ◽  
Doina Elena Gavrila

ABSTRACTWhile the most promising longitudinal recording systems cannot surpass the theoretical limit of about 200 Gb/in2 for areal recording density and the demand for higher densities is permanently increasing, the perpendicular magnetic recording constitutes the realistic issue to the longitudinal one. The perpendicular magnetic recording offers significant advantages, the most important being stronger write and read fields, and therefore the use of media of higher anisotropy, smaller grain size, higher signal-to-noise ratio, and a better thermal stability. Unfortunately, the perpendicular recording has to cope some important physical and technological difficulties. To overcome them, many ingenious solutions were proposed. In this paper the coupled granular/continuous (CGC) media, a subtle association of the continuous and, respectively, granular media, are analysed from the viewpoint of their magnetic and recording properties. The challenges and possible improvements of CGC media are discussed.


2002 ◽  
Vol 91 (5) ◽  
pp. 3129-3138 ◽  
Author(s):  
O. Chubykalo ◽  
B. Lengsfield ◽  
J. Kaufman ◽  
B. Jones

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
W. Baumeister ◽  
R. Rachel ◽  
R. Guckenberger ◽  
R. Hegerl

IntroductionCorrelation averaging (CAV) is meanwhile an established technique in image processing of two-dimensional crystals /1,2/. The basic idea is to detect the real positions of unit cells in a crystalline array by means of correlation functions and to average them by real space superposition of the aligned motifs. The signal-to-noise ratio improves in proportion to the number of motifs included in the average. Unlike filtering in the Fourier domain, CAV corrects for lateral displacements of the unit cells; thus it avoids the loss of resolution entailed by these distortions in the conventional approach. Here we report on some variants of the method, aimed at retrieving a maximum of information from images with very low signal-to-noise ratios (low dose microscopy of unstained or lightly stained specimens) while keeping the procedure economical.


Author(s):  
G.A. Bertero ◽  
R. Sinclair

Pt/Co multilayers displaying perpendicular (out-of-plane) magnetic anisotropy and 100% perpendicular remanent magnetization are strong candidates as magnetic media for the next generation of magneto-optic recording devices. The magnetic coercivity, Hc, and uniaxial anisotropy energy, Ku, are two important materials parameters, among others, in the quest to achieving higher recording densities with acceptable signal to noise ratios (SNR). The relationship between Ku and Hc in these films is not a simple one since features such as grain boundaries, for example, can have a strong influence on Hc but affect Ku only in a secondary manner. In this regard grain boundary separation provides a way to minimize the grain-to-grain magnetic coupling which is known to result in larger coercivities and improved SNR as has been discussed extensively in the literature for conventional longitudinal recording media.We present here results from the deposition of two Pt/Co/Tb multilayers (A and B) which show significant differences in their coercive fields.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


2020 ◽  
Vol 63 (11) ◽  
pp. 3855-3864
Author(s):  
Wanting Huang ◽  
Lena L. N. Wong ◽  
Fei Chen ◽  
Haihong Liu ◽  
Wei Liang

Purpose Fundamental frequency (F0) is the primary acoustic cue for lexical tone perception in tonal languages but is processed in a limited way in cochlear implant (CI) systems. The aim of this study was to evaluate the importance of F0 contours in sentence recognition in Mandarin-speaking children with CIs and find out whether it is similar to/different from that in age-matched normal-hearing (NH) peers. Method Age-appropriate sentences, with F0 contours manipulated to be either natural or flattened, were randomly presented to preschool children with CIs and their age-matched peers with NH under three test conditions: in quiet, in white noise, and with competing sentences at 0 dB signal-to-noise ratio. Results The neutralization of F0 contours resulted in a significant reduction in sentence recognition. While this was seen only in noise conditions among NH children, it was observed throughout all test conditions among children with CIs. Moreover, the F0 contour-induced accuracy reduction ratios (i.e., the reduction in sentence recognition resulting from the neutralization of F0 contours compared to the normal F0 condition) were significantly greater in children with CIs than in NH children in all test conditions. Conclusions F0 contours play a major role in sentence recognition in both quiet and noise among pediatric implantees, and the contribution of the F0 contour is even more salient than that in age-matched NH children. These results also suggest that there may be differences between children with CIs and NH children in how F0 contours are processed.


2020 ◽  
Vol 63 (1) ◽  
pp. 345-356
Author(s):  
Meital Avivi-Reich ◽  
Megan Y. Roberts ◽  
Tina M. Grieco-Calub

Purpose This study tested the effects of background speech babble on novel word learning in preschool children with a multisession paradigm. Method Eight 3-year-old children were exposed to a total of 8 novel word–object pairs across 2 story books presented digitally. Each story contained 4 novel consonant–vowel–consonant nonwords. Children were exposed to both stories, one in quiet and one in the presence of 4-talker babble presented at 0-dB signal-to-noise ratio. After each story, children's learning was tested with a referent selection task and a verbal recall (naming) task. Children were exposed to and tested on the novel word–object pairs on 5 separate days within a 2-week span. Results A significant main effect of session was found for both referent selection and verbal recall. There was also a significant main effect of exposure condition on referent selection performance, with more referents correctly selected for word–object pairs that were presented in quiet compared to pairs presented in speech babble. Finally, children's verbal recall of novel words was statistically better than baseline performance (i.e., 0%) on Sessions 3–5 for words exposed in quiet, but only on Session 5 for words exposed in speech babble. Conclusions These findings suggest that background speech babble at 0-dB signal-to-noise ratio disrupts novel word learning in preschool-age children. As a result, children may need more time and more exposures of a novel word before they can recognize or verbally recall it.


Sign in / Sign up

Export Citation Format

Share Document