Flexibility Of The Zeolite Rho Framework: The Redistribution Of Extra Framework Cations As A Function Of Temperature.

1991 ◽  
Vol 233 ◽  
Author(s):  
John B. Parise ◽  
Xing Liu ◽  
David R. Corbin ◽  
Glover A. Jones

ABSTRACTUpon heating Ba2+, Sr2+ and Cd2+-exchanged zeolite RHO, abrupt changes have been observed in the cubic unit cell parameters [1–3]. Calculations of the powder x-ray diffraction patterns indicate these changes result from relocation of the extra-framework cations. For Ba2+ and Sr2+-exchanged RHO, a shift from the single 8-ring (S8R) to the double 8-ring (D8R)-site is accompanied by contraction of the unit cell. However, for the Cd2+-exchanged material relocation from the S8R to the single 6-ring (S6R)-site coincides with cell expansion. Further, with relocation of Cd2+ the low temperature acentric (A) form is transformed to a centric (C) structure above 300°C. The shift of Cd2+ ion occurs over a distance of 5.7Å, the largest observed in a zeolite.

1982 ◽  
Vol 26 ◽  
pp. 63-72 ◽  
Author(s):  
Nikos P. Pyrros ◽  
Camden R. Hubbard

The production of standard x-ray diffraction patterns at NBS imposes special requirements in the data processing of powder patterns. The patterns should be complete and have an overall accuracy of better than 0.01 degree two theta. To ensure completeness all the observable peaks should be indexed. To make certain that the sample is a pure phase, weak peaks have to be identified as well.The indexing of all the peaks implies that the cell constants must be known and there should be a good agreement between all the calculated and observed peak positions. In practice this is achieved by a least-squares refinement of the unit cell parameters. This serves as a test of the assumed unit cell and also as an interpretation of the observed peaks. Finally, an attempt is made to identify the space group. This step also requires the identification of weak peaks. The agreement of a known space group with the observed reflections further confirms the purity of the sample.


2007 ◽  
Vol 130 ◽  
pp. 97-100 ◽  
Author(s):  
Małgorzata Karolus ◽  
Edward Rówiński ◽  
Eugeniusz Łągiewka

Electrolytical layers of Ni-Mo alloys with polypyrrole, polytiofene and polyethylene were deposited on steel substrate (St3S, 4 cm2). After structural analyses of as quenched samples performed by X-ray diffraction it was noticed that the solid solution of Mo in Ni is observed. After annealing in an argon atmosphere the solid solution of Mo in Ni is becomeing more stable and crystalites are growing to the size of 200 – 300 Å. After annealing in an air atmosphere X-ray diffraction patterns show presence of phases: NiO, MoO, NiCO3, Mo2N. The unit cell parameters of solid solution after annealing are smaller than parameters of as quenched samples what means that the solid solution has been decomposing.


2007 ◽  
Vol 40 (2) ◽  
pp. 260-276 ◽  
Author(s):  
Marek Andrzej Kojdecki ◽  
Esther Ruiz de Sola ◽  
Francisco Javier Serrano ◽  
Estefanía Delgado-Pinar ◽  
María Mercedes Reventós ◽  
...  

The crystalline microstructure of mullites obtained by heating monophasic gels has been investigated. Gels with alumina to silica molar ratio of 3:2 (as in secondary mullite) and 2:1 (as in primary mullite) were prepared by gelling mixtures of aluminium nitrate and tetraethylorthosilicate. Phase transformations were induced by heating the gel precursors, with different final treatment temperatures between 1173 and 1873 K. The mullites formed as a result of thermal treatment were studied by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The crystalline structure (unit-cell parameters) and microstructure were determined from X-ray diffraction patterns. The formation of mullites of homogeneous chemical composition and with unit-cell parameters depending almost linearly on the treatment temperature was found. Their compositions, expressed as alumina to silica molar ratio, were determined from the unit-cell parameters and were in the range of those characterizing primary and secondary mullites. Mullites processed at lower temperatures were accompanied by small amounts of vitreous phase. The crystalline microstructure of the obtained mullites was interpreted by means of a mathematical model of polycrystalline material, involving prevalent crystallite shape, volume-weighted crystallite size distribution and second-order crystalline lattice strain distribution as model parameters. The model parameters were determined for each sample by modelling its X-ray diffraction pattern and fitting it to a measured pattern. Bimodality of the size distribution was observed and explained as a consequence of two crystallite nucleation and growth processes, which started from small alumina-rich and alumina-poor domains, spontaneously formed in a precursor gel at early stages of heating. Images produced by scanning and transmission electron microscopy agreed well with the characteristics obtained from the analysis of the X-ray diffraction patterns.


2013 ◽  
Vol 28 (3) ◽  
pp. 212-221 ◽  
Author(s):  
W. Wong-Ng ◽  
G. Liu ◽  
Y.G. Yan ◽  
J.A. Kaduk

The structure and X-ray patterns of two series of barium lanthanide cobaltates, namely, Ba4Sr2R2Co4O15 (R = La, Nd, Sm, Eu, Gd, and Dy), and Ba5SrR2Co4O15 (R = La, Nd, Sm, Eu, and Gd) have been determined. These compounds crystallize in the space group P63mc; the unit-cell parameters of Ba4Sr2R2Co4O15 (R from La to Dy) decrease from a = 11.6128(2) Å to 11. 5266(9) Å, c = 6.869 03(11) to 6. 7630(5) Å, and V = 802.23(3) Å3 to 778.17(15) Å3, respectively. In the Ba5SrR2Co4O15 series (R = La to Gd), the unit-cell parameters decrease from a = 11.735 44(14) Å to 11.619 79(12) Å, c = 6.942 89 (14) Å to 6.836 52(8) Å, and V = 828.08(3) Å3 to 799.40(2) Å3. In the general structure of (Ba6−xSrx)R2Co4O15, there are four Co ions per formula unit occupying one CoO6 octahedral and three CoO4 tetrahedral units. Through corner-sharing of these polyhedra, a larger Co4O15 unit is formed. Sr2+ ions adopt both octahedral and 8-fold coordination environment. R3+ ions adopt 8-fold coordination (mixed site with Sr), while the larger Ba2+ ions assume both 10- and 11-fold coordination environments. The samples were found to be insulators. X-ray diffraction patterns of these samples have been determined and submitted to the Powder Diffraction File (PDF).


2011 ◽  
Vol 26 (4) ◽  
pp. 346-349 ◽  
Author(s):  
M. A. Macías ◽  
J. A. Henao ◽  
Lina María Acosta ◽  
Alirio Palma

The 6,8-dimethyl-cis-2-vinyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-4-ol (2a) (Chemical formula C14H19NO) and 8-chloro-9-methyl-cis-2-(prop-1-en-2-yl)-2,3,4,5-tetrahydro-1H-benzo[b]azepin-4-ol (2b) (Chemical formula C14H18ClNO) were prepared via the reductive cleavage of the bridged N-O bond of the corresponding 1,4-epoxytetrahydro-1-benzazepines. The X-ray powder diffraction patterns for the new compounds were obtained. The compound 2a was found to crystallize in an orthorhombic system with space group Pmn21 (No. 31), refined unit-cell parameters a = 19.422(6) Å, b = 6.512(3) Å, c = 9.757(4) Å and V = 1234.0(5) Å3. The compound 2b was found to crystallize in a monoclinic system with space group P21/m (No. 11), refined unit-cell parameters a = 17.570(4) Å, b = 8.952(3) Å, c = 14.985(4) Å, β = 101.66(2)°, and V = 2308.3(9) Å3.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 167-172
Author(s):  
Anastasiia P. Topnikova ◽  
Elena L. Belokoneva ◽  
Olga V. Dimitrova ◽  
Anatoly S. Volkov ◽  
Leokadiya V. Zorina

AbstractA new silicate-germanate K2Y[(Si3Ge)O10(OH)] was synthesized hydrothermally in a system Y2O3:GeO2:SiO2 = 1:1:2 (T = 280 °C; P = 90–100 atm.); K2CO3 was added to the solution as a mineralizer. Single-crystal X-ray diffraction experiment was carried out at low temperature (150 K). The unit cell parameters are a = 10.4975(4), b = 6.9567(2), c = 15.4001(6) Å, β = 104.894(4)°; V = 1086.86(7) Å3; space group is P 21/c. A novel complex anion is presented by corrugated (Si,Ge) tetrahedral layers connected by couples of YO6 octahedra into the mixed microporous framework with the channels along b and a axes, the maximal size of cross-section is ~5.6 Å. This structure has similarity with the two minerals: ring silicate gerenite (Ca,Na)2(Y,REE)3Si6O18 · 2H2O and chain silicate chkalovite Na2BeSi2O6. Six-member rings with 1̅ symmetry as in gerenite are distinguished in the new layer. They are mutually perpendicular to each other and connected by additional tetrahedra. Straight crossing chains in chkalovite change to zigzag four-link chains in the new silicate-germanate layer.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2012 ◽  
Vol 76 (4) ◽  
pp. 963-973 ◽  
Author(s):  
G. O. Lepore ◽  
T. Boffa Ballaran ◽  
F. Nestola ◽  
L. Bindi ◽  
D. Pasqual ◽  
...  

AbstractAmbient temperature X-ray diffraction data were collected at different pressures from two crystals of β-As4S4, which were made by heating realgar under vacuum at 295ºC for 24 h. These data were used to calculate the unit-cell parameters at pressures up to 6.86 GPa. Above 2.86 GPa, it was only possible to make an approximate measurement of the unit-cell parameters. As expected for a crystal structure that contains molecular units held together by weak van der Waals interactions, β-As4S4 has an exceptionally high compressibility. The compressibility data were fitted to a third-order Birch–Murnaghan equation of state with a resulting volume V0 = 808.2(2) Å3, bulk modulus K0 = 10.9(2) GPa and K' = 8.9(3). These values are extremely close to those reported for the low-temperature polymorph of As4S4, realgar, which contains the same As4S4 cage-molecule. Structural analysis showed that the unit-cell contraction is due mainly to the reduction in intermolecular distances, which causes a substantial reduction in the unit-cell volume (∼21% at 6.86 GPa). The cage-like As4S4 molecules are only slightly affected. No phase transitions occur in the pressure range investigated.Micro-Raman spectra, collected across the entire pressure range, show that the peaks associated with As–As stretching have the greatest pressure dependence; the S–As–S bending frequency and the As–S stretching have a much weaker dependence or no variation at all as the pressure increases; this is in excellent agreement with the structural data.


Author(s):  
Fang Lu ◽  
Bei Zhang ◽  
Yong Liu ◽  
Ying Song ◽  
Gangxing Guo ◽  
...  

Phytases are phosphatases that hydrolyze phytates to less phosphorylatedmyo-inositol derivatives and inorganic phosphate. β-Propeller phytases, which are very diverse phytases with improved thermostability that are active at neutral and alkaline pH and have absolute substrate specificity, are ideal substitutes for other commercial phytases. PhyH-DI, a β-propeller phytase fromBacillussp. HJB17, was found to act synergistically with other single-domain phytases and can increase their efficiency in the hydrolysis of phytate. Crystals of native and selenomethionine-substituted PhyH-DI were obtained using the vapour-diffusion method in a condition consisting of 0.2 Msodium chloride, 0.1 MTris pH 8.5, 25%(w/v) PEG 3350 at 289 K. X-ray diffraction data were collected to 3.00 and 2.70 Å resolution, respectively, at 100 K. Native PhyH-DI crystals belonged to space groupC121, with unit-cell parametersa = 156.84,b = 45.54,c = 97.64 Å, α = 90.00, β = 125.86, γ = 90.00°. The asymmetric unit contained two molecules of PhyH-DI, with a corresponding Matthews coefficient of 2.17 Å3 Da−1and a solvent content of 43.26%. Crystals of selenomethionine-substituted PhyH-DI belonged to space groupC2221, with unit-cell parametersa = 94.71,b= 97.03,c= 69.16 Å, α = β = γ = 90.00°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.44 Å3 Da−1and a solvent content of 49.64%. Initial phases for PhyH-DI were obtained from SeMet SAD data sets. These data will be useful for further studies of the structure–function relationship of PhyH-DI.


2011 ◽  
Vol 26 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Sytle M. Antao ◽  
Ishmael Hassan

The crystal structures of marialite (Me6) from Badakhshan, Afghanistan and meionite (Me93) from Mt. Vesuvius, Italy were obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements. Their structures were refined in space groups I4/m and P42/n, and similar results were obtained. The Me6 sample has a formula Ca0.24Na3.37K0.24[Al3.16Si8.84O24]Cl0.84(CO3)0.15, and its unit-cell parameters are a=12.047555(7), c=7.563210(6) Å, and V=1097.751(1) Å3. The average ⟨T1-O⟩ distances are 1.599(1) Å in I4/m and 1.600(2) Å in P42/n, indicating that the T1 site contains only Si atoms. In P42/n, the average distances of ⟨T2-O⟩=1.655(2) and ⟨T3-O⟩=1.664(2) Å are distinct and are not equal to each other. However, the mean ⟨T2,3-O⟩=1.659(2) Å in P42/n and is identical to the ⟨T2′-O⟩=1.659(1) Å in I4/m. The ⟨M-O⟩ [7]=2.754(1) Å (M site is coordinated to seven framework O atoms) and M-A=2.914(1) Å; these distances are identical in both space groups. The Me93 sample has a formula of Na0.29Ca3.76[Al5.54Si6.46O24]Cl0.05(SO4)0.02(CO3)0.93, and its unit-cell parameters are a=12.19882(1), c=7.576954(8) Å, and V=1127.535(2) Å3. A similar examination of the Me93 sample also shows that both space groups give similar results; however, the C–O distance is more reasonable in P42/n than in I4/m. Refining the scapolite structure near Me0 or Me100 in I4/m forces the T2 and T3 sites (both with multiplicity 8 in P42/n) to be equivalent and form the T2′ site (with multiplicity 16 in I4/m), but ⟨T2-O⟩ is not equal to ⟨T3-O⟩ in P42/n. Using different space groups for different regions across the series implies phase transitions, which do not occur in the scapolite series.


Sign in / Sign up

Export Citation Format

Share Document