Chemical Vapor Deposition of Diamond Films Using Water:Alcohol:Organic-Acid Solutions

1992 ◽  
Vol 242 ◽  
Author(s):  
R. A. Rudder ◽  
J. B. Posthill ◽  
G. C. Hudson ◽  
D. P. Malta ◽  
R. E. Thomas ◽  
...  

ABSTRACTA low pressure chemical vapor deposition technique using water-alcohol vapors has been developed for the deposition of polycrystalline diamond films and homoepitaxial diamond films. The technique uses a low pressure (0.50 – 1.00 Torr) rf-induction plasma to effectively dissociate the water vapor into atomic hydrogen and OH. Alcohol vapors admitted into the chamber with the water vapor provide the carbon balance to produce diamond growth. At 1.00 Torr, high quality diamond growth occurs with a gas phase concentration of water approximately equal to 47% for methanol, 66% for ethanol, and 83% for isopropanol. A reduction in the critical power necessary to magnetically couple to the plasma gas is achieved through the addition of acetic acid to the water.alcohol solution. The lower input power allows lower temperature diamond growth. Currently, diamond depositions using water:methanol:acetic-acid are occurring as low as 300 ° C with only about 500 W power input to the 50 mm diameter plasma tube.

1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


1995 ◽  
Vol 10 (11) ◽  
pp. 2685-2688 ◽  
Author(s):  
Qijin Chen ◽  
Zhangda Lin

Diamond film was synthesized on thin Ti wafers (as thin as 40 μm) via hot filament chemical vapor deposition (HFCVD). The hydrogen embrittlement of the titanium substrate and the formation of a thick TiC interlayer were suppressed. A very low pressure (133 Pa) was employed to achieve high-density rapid nucleation and thus to suppress the formation of TiC. Oxygen was added to source gases to lower the growth temperature and therefore to slow down the hydrogenation of the thin Ti substrate. The role of the very low pressure during nucleation is discussed, providing insight into the nucleation mechanism of diamond on a titanium substrate. The as-grown diamond films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and x-ray analysis.


1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

1989 ◽  
Vol 162 ◽  
Author(s):  
Y. H. Lee ◽  
G.-H. Ma ◽  
K. J. Bachmann ◽  
J. T. Glass

ABSTRACTThe growth of diamond films on Si(001), polycrystalline Ni, Mo, Ta, and W substrates by biased controlled chemical vapor deposition is discussed. Biasing effects were examined using the Si(001) substrates. The film quality as judged by Raman spectroscopy and scanning electron microscopy depended strongly on the biasing conditions. Under low current reverse bias conditions, highly faceted cubooctahedral polycrystalline diamond growth exhibiting a single sharp Raman line at 1332 cm-1 was obtained. Transmission electron microscopy indicated that these films contained relatively low defect densities and no significant interfacial layers. Biasing into high current conditions which created a plasma resulted in multiply twinned, microcrystalline growth incorporating sp2 bonded carbon into the diamond film. Such films were found to contain very high defect densities and a relatively thick interfacial layer. An investigation of the effects of substrate material was also conducted. Films grown on Si, Ni and W exhibited the best quality. The relationship between this quality and substrate properties such as surface energy and lattice parameter is discussed.


1992 ◽  
Vol 60 (3) ◽  
pp. 329-331 ◽  
Author(s):  
R. A. Rudder ◽  
G. C. Hudson ◽  
J. B. Posthill ◽  
R. E. Thomas ◽  
R. C. Hendry ◽  
...  

1997 ◽  
Vol 12 (10) ◽  
pp. 2686-2698 ◽  
Author(s):  
L. Fayette ◽  
B. Marcus ◽  
M. Mermoux ◽  
N. Rosman ◽  
L. Abello ◽  
...  

A sequential analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition (CVD) reactor has been performed by Raman spectroscopy. The plasma was switched off during measurements, but the substrate heating was maintained to minimize thermoelastic stresses. The detectivity of the present experimental setup has been estimated to be about a few tens of μmg/cm2. From such a technique, one expects to analyze different aspects of diamond growth on a non-diamond substrate. The evolution of the signals arising from the substrate shows that the scratching treatment used to increase the nucleation density induces an amorphization of the silicon surface. This surface is annealed during the first step of deposition. The evolution of the line shape of the spectra indicates that the non-diamond phases are mainly located in the grain boundaries. The variation of the integrated intensity of the Raman signals has been interpreted using a simple absorption model. A special emphasis was given to the evolution of internal stresses during deposition. It was verified that compressive stresses were generated when coalescence of crystals took place.


2010 ◽  
Vol 442 ◽  
pp. 195-201
Author(s):  
F. Iqbal ◽  
A. Ali ◽  
A. Mehmood ◽  
M. Yasin ◽  
A. Raja ◽  
...  

We report the growth of SiC layers on low cost p-type silicon (100 and/or 111) substrates maintained at constant temperature (1050 - 1350oC, ∆T=50oC) in a low pressure chemical vapor deposition reactor. Typical Fourier transform infrared spectrum showed a dominant peak at 800 cm-1 due to Si-C bond excitation. Large area x-ray diffraction spectra revealed single crystalline cubic structures of 3C-SiC(111) and 3C-SiC(200) on Si(111) and Si(100) substrates, respectively. Cross-sectional views exposed by scanning electron microscopy display upto 104 µm thick SiC layer. Energy dispersive spectroscopy of the layers demonstrated stiochiometric growth of SiC. Surface roughness and morphology of the films were also checked with the help of atomic force microscopy. Resistivity of the as-grown layers increases with increasing substrate temperature due to decrease of isolated intrinsic defects such as silicon and/or carbon vacanies having activation energy 0.59 ±0.02 eV.


Sign in / Sign up

Export Citation Format

Share Document