Bias Controlled Hot Filament Chemical Vapor Deposition of Diamond Thin Film on Various Substrates

1989 ◽  
Vol 162 ◽  
Author(s):  
Y. H. Lee ◽  
G.-H. Ma ◽  
K. J. Bachmann ◽  
J. T. Glass

ABSTRACTThe growth of diamond films on Si(001), polycrystalline Ni, Mo, Ta, and W substrates by biased controlled chemical vapor deposition is discussed. Biasing effects were examined using the Si(001) substrates. The film quality as judged by Raman spectroscopy and scanning electron microscopy depended strongly on the biasing conditions. Under low current reverse bias conditions, highly faceted cubooctahedral polycrystalline diamond growth exhibiting a single sharp Raman line at 1332 cm-1 was obtained. Transmission electron microscopy indicated that these films contained relatively low defect densities and no significant interfacial layers. Biasing into high current conditions which created a plasma resulted in multiply twinned, microcrystalline growth incorporating sp2 bonded carbon into the diamond film. Such films were found to contain very high defect densities and a relatively thick interfacial layer. An investigation of the effects of substrate material was also conducted. Films grown on Si, Ni and W exhibited the best quality. The relationship between this quality and substrate properties such as surface energy and lattice parameter is discussed.

1992 ◽  
Vol 242 ◽  
Author(s):  
R. A. Rudder ◽  
J. B. Posthill ◽  
G. C. Hudson ◽  
D. P. Malta ◽  
R. E. Thomas ◽  
...  

ABSTRACTA low pressure chemical vapor deposition technique using water-alcohol vapors has been developed for the deposition of polycrystalline diamond films and homoepitaxial diamond films. The technique uses a low pressure (0.50 – 1.00 Torr) rf-induction plasma to effectively dissociate the water vapor into atomic hydrogen and OH. Alcohol vapors admitted into the chamber with the water vapor provide the carbon balance to produce diamond growth. At 1.00 Torr, high quality diamond growth occurs with a gas phase concentration of water approximately equal to 47% for methanol, 66% for ethanol, and 83% for isopropanol. A reduction in the critical power necessary to magnetically couple to the plasma gas is achieved through the addition of acetic acid to the water.alcohol solution. The lower input power allows lower temperature diamond growth. Currently, diamond depositions using water:methanol:acetic-acid are occurring as low as 300 ° C with only about 500 W power input to the 50 mm diameter plasma tube.


2005 ◽  
Vol 20 (3) ◽  
pp. 703-711 ◽  
Author(s):  
Hou-Guang Chen ◽  
Li Chang

We report a unique morphology of diamond nanoplatelets synthesized by microwave plasma chemical vapor deposition on Ni coated polycrystalline diamond substrates. The diamond nanoplatelets were as thin as approximately 30 nm. Electron microscopy showed that the diamond nanoplatelets appear in a shape consisting of trapezoid and parallelogram tabular crystallites. Furthermore, the diamond nanoplatelets were single crystalline, as shown by electron diffraction. The edges of nanoplatelets were along the 〈110〉 direction with both the top and bottom tabular surfaces parallel to the {111} plane. Transmission electron microscopy revealed that the twinned planes are parallel to the platelet and side-face structure in ridge shape is bounded by {100} and {111} planes. Lateral growth of diamond nanoplatelet is believed to result from twin and ridge face structure. An oriented thin graphite layer was observed on some diamond nanoplatelets.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


1997 ◽  
Vol 36 (Part 2, No. 10B) ◽  
pp. L1406-L1409 ◽  
Author(s):  
Gou-Tsau Liang ◽  
Franklin Chau-Nan Hong

NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250045 ◽  
Author(s):  
YUN SUN ◽  
RYO KITAURA ◽  
TAKUYA NAKAYAMA ◽  
YASUMITSU MIYATA ◽  
HISANORI SHINOHARA

The influences of synthesis parameters on the mean diameter and diameter distribution of as-grown single-wall carbon nanotubes (SWCNTs) with chemical vapor deposition (CVD) using the mist flow method have been investigated in detail with Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We found that CVD reaction temperature and flow rate play an essential role in controlling the mean diameter and the quality of as-grown SWCNTs. Furthermore, we found that the carbon supply kinetics can be a dominant factor to determine the diameter of as-grown SWCNTs in the present mist flow method. Under a different combination of various parameters, the mean diameter of SWCNTs can be varied from 0.9 nm to 1.5 nm controllably.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


Sign in / Sign up

Export Citation Format

Share Document