Modeling of Silicon Deposition Yield at Low Temperature by ArF Excimer Laser Photolysis of Disilane

1992 ◽  
Vol 263 ◽  
Author(s):  
B. Fowler ◽  
S. Lian ◽  
S. Krishnan ◽  
C. Li ◽  
L. Jung ◽  
...  

ABSTRACTNon-thermal Chemical Vapor Deposition (CVD) such as laser-enhanced photo-CVD of Si at low temperatures is important for Si-based heterostructures and doping superlattices. Growth kinetic models must be developed to allow these processes to be fully exploited. Intrinsic Si epitaxial layers were deposited at low substrate temperatures of 250-350ºC using the 193 nm output of an ArF excimer laser to directly dissociate Si2H6. The intrinsic film deposition rate can be described by a kinetic model that considers the gas phase reactions of the primary photolysis products and diffusion ofsilicon-bearing molecules to the growth surface. With the laser beam tangential to the substrate surface, growth rates as a function of beam-to-substrate distance have been characterized and indicate that very little gas phase reaction occurs for the dominant Si growth precursor. In order for intrinsic film deposition to result solely from Si2H6 photolysis products, a sticking coefficient ≥ 0.6 must be assigned to the dominant growth precursor in order to fit the observed yield of Si deposited in the films, indicating that the dominant growth precursor in 193 nm Si2H6 photolysis is perhaps H2SiSiH2.

1992 ◽  
Vol 271 ◽  
Author(s):  
Kenneth A. Aitchison ◽  
James D. Barrie ◽  
Joseph Ciofalo

ABSTRACTMetal-Organic Chemical Vapor Deposition (MOCVD) is a versatile technique for the deposition of thin films of metals, semiconductors and ceramics. Commonly used hot wall flow-reactor designs suffer from a number of limitations. Chemical processes occurring in these reactors typically include a combination of homogeneous (gas-phase) and heterogeneous (gas-surface) reactions. These complex conditions are difficult to model and are poorly understood. In addition, flow reactors use large quantities of expensive precursor materials and are not well suited to the formation of abrupt interfaces. We report here a novel MOCVD technique which addresses these problems and enables a more thorough mechanistic understanding of the heterogeneous decomposition pathways of metal-organic compounds. This technique, the low-pressure pulsed gas method, has been demonstrated to provide high deposition rates with excellent control over film thickness. The deposition conditions effectively eliminate homogeneous processes allowing surface-mediated reactions to dominate. This decoupling of gas-phase chemistry from film deposition allows a better understanding of reaction mechanisms and provides better control over film growth. Both single metal oxides and binary oxide systems have been investigated on a variety of substrate materials. Effects of precursor chemistry, substrate surface, temperature and pressure on film composition and morphology will be discussed.


1987 ◽  
Vol 101 ◽  
Author(s):  
D. Eres ◽  
D. H. Lowndes ◽  
D. B. Geohegan ◽  
D. N. Mashburn

ABSTRACTPulsed ArF (193 nm) excimer laser radiation has been used to dissociate disilane (Si2H6), resulting in photochemically controlled deposition of amorphous Si thin films. A high stability HeNe (6328 Å) laser was used for precise in situ monitoring of film deposition rates, under varying deposition conditions. A helium window purge nearly eliminated Si film deposition on the chamber windows. With the excimer laser beam parallel to the substrate, deposition of amorphous Si can be controlled entirely by the photon fluence (negligible background thermal growth) at temperatures from room temperature up to ~400°C. Reasonable photolytic deposition rates (>1 A/sec) are combined with "digital" control of film thickness (>0.02 A/laser pulse). Activation energies of 1.50 (±0.1) eV and 0.09 (±0.02) eV were found for pyrolytic and photolytic deposition, respectively.


1993 ◽  
Author(s):  
Bruce W. Smith ◽  
Malcolm C. Gower ◽  
Mark Westcott ◽  
Lynn F. Fuller

1995 ◽  
Vol 377 ◽  
Author(s):  
G. Stevens ◽  
P. Santos-Filho ◽  
S. Habermehl ◽  
G. Lucovsky

ABSTRACTWe have deposited Si-nitride thin films by remote plasma-enhanced chemical-vapor deposition using different combinations of hydrogen and deuterium source gases. In one set of experiments, NH3 and SiH4 were injected downstream from a He plasma and the ratio of NH3 to SiH4 was adjusted so that deposited films contained IR-detectable bonded-H in SiN-H arrangements, but not in Si-H arrangements. Similar results were obtained using the same ND3 to SiD4 flow ratio; these films contained only SiN-D groups. However, films prepared from ND3 and SiH4 displayed both SiN-D and SiN-H groups in essentially equal concentrations establishing that H and D atoms bonded to N are derived from both source gases SiH (D) 4 and NH (D) 3, and further that inter-mixing of H and/or D atoms occurs at the growth surface. This reaction pathway is supported by additional studies in which films were grown from SD4 and ND3 with either i) He or ii) He/H2 mixtures being plasma excited. The films grown from the deuterated source gases without H2, displayed only SiN-D bands, whereas the films grown using the He/H2 mixture displayed both SiN-H and SiN-D bands. The total concentration of N-H and N-D bonds in the films grown from the He/H2 excitation was the same as the concentration of N-D, supporting the surface reaction model. In-situ mass spectrometry provides additional insights in the film deposition reactions.


Sign in / Sign up

Export Citation Format

Share Document