In Situ Monitoring of the Smear-Out of the Ge Profile in GAS Source SiGe MBE Using Rheed Intensity Oscillations

1992 ◽  
Vol 263 ◽  
Author(s):  
K. Werner ◽  
S. Butzke ◽  
J.W. Maes ◽  
O.F.Z. Schannen ◽  
J. Trommel ◽  
...  

ABSTRACTWe have studied the deposition of GexSi1−x layers on (100) Si substrates by gas source molecular beam epitaxy (GSMBE) using disilane and germane.The investigation of RHEED intensity oscillations during growth reveals the well known rate enhancement obtained when adding a small amount of germane to the disilane flux. However, when exposing a previously deposited Ge layer to a pure disilane flux the growth rate during the first few monolayers remains at an enhanced value but returns to its homoepitaxial value after about 10 to 15 monolayers. This behaviour was observed under a variety of growth conditions. It is in marked contrast to the experience obtained in conventional Si/Ge MBE and suggests a catalytic effect of the particular surface present during GSMBE growth. We propose that this effect is caused by the surface segregation of Ge species and leads to a smear-out of the Ge profile in the layer.

2013 ◽  
Vol 740-742 ◽  
pp. 339-343 ◽  
Author(s):  
Shota Sambonsuge ◽  
Eiji Saito ◽  
Myung Ho Jung ◽  
Hirokazu Fukidome ◽  
Sergey Filimonov ◽  
...  

3C-SiC is the only polytype that grows heteroepitaxially on Si substrates and, therefore, it is of high interest for various potentail applications. However, the large (~20 %) lattice mismatch of SiC with the Si substrate causes a serious problem. In this respect, rotated epitaxy of 3C-SiC(111) on the Si(110) substrate is highly promising because it allows reduction of the lattice mismatch down to a few percent. We have systematically searched the growth conditions for the onset of this rotated epitaxy, and have found that the rotaed epitaxy occurrs at higher growth temperatures and at lower source-gas pressures. This result indicates that the rotated epitaxy occurs under growth conditions that are close to the equilibrium and is thefore thermodynamically, rather than kinetically, driven.


1996 ◽  
Vol 164 (1-4) ◽  
pp. 40-46 ◽  
Author(s):  
J. Zhang ◽  
A.K. Lees ◽  
A.G. Taylor ◽  
D. Raisbeck ◽  
N. Shukla ◽  
...  

1999 ◽  
Vol 4 (S1) ◽  
pp. 155-160
Author(s):  
Yuichi Hiroyama ◽  
Masao Tamura

We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbonization using C2H2 gas, the SiC layers with the thickness between 2.5 and 4 nm result in the epitaxial growth of β-GaN on thus SiC-formed Si substrates. At the highest GaN growth rate of 110 nm/h ( a Ga-cell temperature of 950 °C), β-GaN layers grown at a substrate temperature of 700 °C show a nearly flat surface morphology and the fraction of included hexagonal GaN becomes negligible when compared to the results of β-GaN layers grown under other conditions of Ga-cell and substrate temperatures. Thus obtained β-GaN films have good performance in photoluminescence intensity although the FWHM of band-edge recombination peak is still wider (137 meV) than the reported values for the β-GaN on 3C-SiC and GaAs.


1998 ◽  
Vol 537 ◽  
Author(s):  
Yuichi Hiroyama ◽  
Masao Tamura

We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbonization using C2H2, gas, the SiC layers with the thickness between 2.5 and 4 nm result in the epitaxial growth of β-GaN on thus SiC-formed Si substrates. At the highest GaN growth rate of 110 nm/h (a Ga-cell temperature of 950 °C), β-GaN layers grown at a substrate temperature of 700 °C show a nearly flat surface morphology and the fraction of included hexagonal GaN becomes negligible when compared to the results of β-GaN layers grown under other conditions of Ga-cell and substrate temperatures. Thus obtained β-GaN films have good performance in photoluminescence intensity although the FWHM of band-edge recombination peak is still wider (137 meV) than the reported values for the β-GaN on 3C-SiC and GaAs.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


Sign in / Sign up

Export Citation Format

Share Document