Growth and Characterization of InxGa1−xP(x≤0.38) on GaP(1OO) with a Linearly Graded Buffer Layer by Gas-Source Molecular Beam Epitaxy

1992 ◽  
Vol 281 ◽  
Author(s):  
T. P. Chin ◽  
J. C. P. Chang ◽  
K. L. Kavanagh ◽  
C. W. Tu ◽  
P. D. Kirchner ◽  
...  

ABSTRACTInxGa1−xP(x>0.27) grown on a GaP substrate has a large direct-bandgap, which is suitable for yellow light emission on a transparent substrate. Because of the large lattice mismatch, usually a thick (10–20 μm) graded buffer layer was required to reduce the threading dislocation density. In this work we report that a thin (1.2 μm for x≃0.35), linearly graded buffer layer can filter out dislocations effectively. The structures were grown by gas-source molecular beam epitaxy. Reflection high-energy electron diffraction (RHEED) intensity oscillations and X-ray double-crystal diffraction were used to control and determine the composition, respectively. Threading dislocations are well confined in the buffer layer, as shown under transmission electron microscopy. Dislocation loops injected into the substrate were observed, similar to those observed in the Six Ge1−x/Si system. X-ray analysis also shows that the 3% mismatched buffer layer is fully relaxed. This relaxed buffer layer then can serve as a substrate for further growth. Homojunction and heterojunction light emitting diodes were fabricated to demonstrate the material quality.

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750036 ◽  
Author(s):  
Yunxia Zhou ◽  
Jun Zhu ◽  
Xingpeng Liu ◽  
Zhipeng Wu

Ferroelectric Pb(Zr[Formula: see text],Ti[Formula: see text]O3(PZT) thin film was grown on [Formula: see text]-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) [Formula: see text] PZT//(002) [Formula: see text] STO//(001) [Formula: see text] GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45[Formula: see text] in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52[Formula: see text]mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5[Formula: see text]G (100[Formula: see text]mW/cm[Formula: see text] illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.


2001 ◽  
Vol 696 ◽  
Author(s):  
Gu Hyun Kim ◽  
Jung Bum Choi ◽  
Joo In Lee ◽  
Se-Kyung Kang ◽  
Seung Il Ban ◽  
...  

AbstractWe have studied infrared photoluminescence (PL) and x-ray diffraction (XRD) of 400 nm and 1500 nm thick InAs epilayers on GaAs, and 4 nm thick InAs on graded InGaAs layer with total thickness of 300 nm grown by molecular beam epitaxy. The PL peak positions of 400 nm, 1500 nm and 4 nm InAs epilayer measured at 10 K are blue-shifted from that of InAs bulk by 6.5, 4.5, and 6 meV, respectively, which can be largely explained by the residual strain in the epilayer. The residual strain caused by the lattice mismatch between InAs and GaAs or graded InGaAs/GaAs was observed from XRD measurements. While the PL peak position of 400 nm thick InAs layer is linearly shifted toward higher energy with increase in excitation intensity ranging from 10 to 140 mW, those of 4 nm InAs epilayer on InGaAs and 1500 nm InAs layer on GaAs is gradually blue-shifted and then, saturated above a power of 75 mW. These results suggest that adopting a graded InGaAs layer between InAs and GaAs can efficiently reduce the strain due to lattice mismatch in the structure of InAs/GaAs.


1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


1992 ◽  
Vol 71 (10) ◽  
pp. 4916-4919 ◽  
Author(s):  
S. H. Li ◽  
S. W. Chung ◽  
J. K. Rhee ◽  
P. K. Bhattacharya

1991 ◽  
Vol 222 ◽  
Author(s):  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTA simple kinetic model has been developed to explain the agreement between in situ and ex situ determination of phosphorus composition in GaAs1−xPx (x < 0.4) epilayers grown on GaAs (001) by gas-source molecular-beam epitaxy (GSMBE). The in situ determination is by monitoring the intensity oscillations of reflection high-energy-electron diffraction during group-V-limited growth, and the ex situ determination is by x-ray rocking curve measurement of GaAs1−xPx/GaAs strained-layer superlattices grown under group-III-limited growth condition.


1987 ◽  
Vol 103 ◽  
Author(s):  
J. M. Vandenberg ◽  
M. B. Panish ◽  
R. A. Hamm

ABSTRACTHigh-resolution X-ray diffraction (HRXRD) studies have been cardied out to determine the structural perfection and periodicity for a number of high-quality InGaAsfInP superlattices grown by gas source molecular beam epitaxy. X-ray scans were carried out with a compact four-crystal monochromator resulting in a resolution of one molecular layer (∼3,Å), which enables one to observe very small variations in the periodic structure. Sharp and strong higher-order satellite reflections in the XRD profiles were observed indicating smooth interfaces with well-defined modulated structures. Excellent computer simulated fits of the X-ray satellite pattern could be generated based on a kinematical XRD step model which assumes ideally sharp interfaces, and periodic structural parameters such as the strain in the well could be extracted. Our results3 demonstrate that HRXRD in conjunction with the kinematical step model is a very sensitive method to assess periodic structural modifications in superlattices as a result of the precise growth conditions in the gas source MBE system.


1990 ◽  
Vol 216 ◽  
Author(s):  
T. P. Chin ◽  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTInP and InAs (100) were grown by gas-source molecular-beam epitaxy (GSMBE) with arsine, phosphine, and elemental indium. Reflection high-energy-electron diffraction (RHEED) was used to monitor surface reconstructions and growth rates. (2×4) to (2×1) transition was observed on InP (100) as phosphine flow rate increased. (4×2) and (2×4) patterns were observed for In-stabilized and As-stabilized InAs surfaces, respectively. Both group-V and group-rn-induced RHEED oscillations were observed. The group-V surface desorption activation energy were measured to be 0.61 eV for InP and 0.19 eV for InAs. By this growth rate study, we are able to establish a precise control of V/HII atomic ratios in GSMBE of InP and InAs.


Sign in / Sign up

Export Citation Format

Share Document