Delta Doping for Deep Level Analysis in Semiconductors

1992 ◽  
Vol 281 ◽  
Author(s):  
J. Piprek ◽  
P. Krispin ◽  
H. Kostial ◽  
K. W. BÖer

ABSTRACTThe occupation of deep-level defects in semiconductors is investigated by delta-doping such impurities at a specified distance from the metallurgical boundary within Schottky diodes. Capacitance-voltage characteristics are analyzed using ID device simulation software. These characteristics change significantly depending on the deep-level energy and the sheet position. This new approach to deep-level analysis is applied to Schottky diodes on MBE-grown n-GaAs with a planar titanium doped sheet. At moderate Ti concentrations the well-known Ti acceptor level near Ec-0.2 eV governs the electrical properties. In addition, two other types of Ti defects are found.

1992 ◽  
Vol 173 (2) ◽  
pp. 661-670 ◽  
Author(s):  
J. Piprek ◽  
P. Krispin ◽  
H. Kostial ◽  
C. H. Lange ◽  
K. W. Böer

2011 ◽  
Vol 178-179 ◽  
pp. 183-187
Author(s):  
Chi Kwong Tang ◽  
Lasse Vines ◽  
Bengt Gunnar Svensson ◽  
Eduard Monakhov

The interaction between hydrogen and the iron-boron pair (Fe-B) has been investigated in iron-contaminated boron-doped Cz-Si using capacitance-voltage measurements (CV) and deep level transient spectroscopy (DLTS). Introduction of hydrogen was performed by wet chemical etching and subsequent reverve bias annealing of Al Schottky diodes. The treatment led to the appearance of the defect level characteristic to interstitial iron (Fei) with a corresponding decrease in the concentration of the Fe-B pair. Concentration versus depth profiles of the defects show that dissociation of Fe-B occurs in the depletion region and capacitance-voltage measurements unveil a decrease in the charge carrier concentration due to passivation of B. These quantitative observations imply strongly that H promotes dissociation of Fe-B releasing Fei whereas no detectable passivation of Fe-B or Fei by H occurs.


1985 ◽  
Vol 46 ◽  
Author(s):  
C.-J. Li ◽  
Q. Sun ◽  
J. Lagowski ◽  
H.C. Gatos

AbstractWe propose a new approach to the defect characterization in semiinsulating (SI) GaAs which combines the high spatial resolution and scanning capability of the Electron Beam-Induced Current (EBIC) mode of Scanning Electron Microscopy (SEM) with the advantages of optical and thermal spectroscopies employed in the identification of deep levels. In the PHOTO-EBIC approach a DC electron beam and a chopped subbandgap monochromatic light impinge on the SI GaAs through a semi-transparent Au electrode. The photoinduced modulation of the EBIC as a function of the subbandgap energy of incident photons constitutes a structure which corresponds to the photoionization of deep levels. In the thermally stimulated EBIC (TS-EBIC) the deep levels are filled at low temperature by the excess carriers generated by an electron beam. Subsequently, the changes of EBIC as a function of temperature constitute a spectrum of peaks which correspond to different deep levels. The peak position determines the deep level energy while the magnitude of peaks can be used for the assessment of the relative concentration of deep levels located within the small volume probed by the electron beam.


Author(s):  
A. Rabehi ◽  
B. Akkal ◽  
M. Amrani ◽  
S. Tizi ◽  
Z. Benamara ◽  
...  

In this paper, we give a systematical description of Ni|6H-SiC Schottky diode by current--voltage I(V) characteristics at room temperature and capacitance--voltage C(V) characteristics at various frequencies (10-800 kHz) and various temperatures (77-350oK). The I(V) characteristics show a double-barrier phenomenon, which gives a low and high barrier height (phiLbn=0.91 eV, phiHbn=1.55 eV), with a difference of Deltaphibn=0.64 eV. Also, low ideality factor nL=1.94 and high ideality factor nH=1.22 are obtained. The C-V-T measurements show that the barrier height phibn decreases with decreasing of temperature and gives a temperature coefficient alpha=1.0·10-3 eV/K and phibn(T=0 K)=1.32 eV. Deep-level transient spectroscopy (DLTS) has been used to investigate deep levels in the Ni|6H-SiC Schottky diode. The traps signatures such as activation energies Ea=0.50±0.07 eV, capture cross-section sigma=1.8·10-20 cm2, and defect concentration NT=6.2·1013 cm-3 were calculated from Arrhenius plots. Keywords: si1licon carbide, Schottky diodes, I-V, C-V-T, deep-level transient spectroscopy (DLTS).


1987 ◽  
Vol 104 ◽  
Author(s):  
A. S. Yapsir ◽  
P. Hadizad ◽  
T. -M. Lu ◽  
J. C. Corelli ◽  
J. W. Corbett ◽  
...  

ABSTRACTHydrogen ion implantation was performed on Al/n-Si Schottky diodes at doses ranging from 1014 H cm2 to 1016 H cm−2. The effects of ion bombardment and subsequent heat treatments on the diodes were studied using the current-voltage, capacitance-voltage and deep level transient spectroscopy techniques. To explore the stability of hydrogen in silicon, the 1H(15N,aγ)12C nuclear resonance reaction was used. The different effects observed in the low and high dose implantation will be presented.


1995 ◽  
Vol 378 ◽  
Author(s):  
Kevin L. Beaman ◽  
Aditya Agarwal ◽  
Sergei V. Koveshnikov ◽  
George A. Rozgonyi

AbstractThe lateral motion of iron impurities was observed and studied in ptype iron contaminated silicon. The lateral diffusion was induced by and then measured using Schottky diodes with a special interdigitated fingers design. Capture of the impurities was done by diffusing to laterally placed dislocation loops formed by a self aligned ion implantation. Lateral changes in Fe concentration were determined using capacitance-voltage and deep level transient spectroscopy.


1992 ◽  
Author(s):  
Joachim Piprek ◽  
H. Kostial ◽  
Peter Krispin ◽  
C. H. Lange ◽  
Karl W. Boer

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 466
Author(s):  
Pawel Szczepankowski ◽  
Natalia Strzelecka ◽  
Enrique Romero-Cadaval

This article presents three variants of the Pulse Width Modulation (PWM) for the Double Square Multiphase type Conventional Matrix Converters (DSM-CMC) supplying loads with the open-end winding. The first variant of PWM offers the ability to obtain zero value of the common-mode voltage at the load’s terminals and applies only six switches within the modulation period. The second proposal archives for less Total Harmonic Distortion (THD) of the generated load voltage. The third variant of modulation concerns maximizing the voltage transfer ratio, minimizing the number of switching, and the common-mode voltage cancellation. The discussed modulations are based on the concept of sinusoidal voltage quadrature signals, which can be an effective alternative to the classic space-vector approach. In the proposed approach, the geometrical arrangement of basic vectors needed to synthesize output voltages is built from the less number of vectors, which is equal to the number of the matrix converter’s terminals. The PWM duty cycle computation is performed using only a second-order determinant of the voltages coordinate matrix without using trigonometric functions. A new approach to the PWM duty cycles computing and the load voltage synthesis by 5 × 5 and 12 × 12 topologies has been verified using the PSIM simulation software.


Sign in / Sign up

Export Citation Format

Share Document