Luminescence Activation of Porous Silicon by Post-Anodization Treatment

1992 ◽  
Vol 283 ◽  
Author(s):  
A. Kux ◽  
F. Muller ◽  
F. Koch

ABSTRACTWe prepare “nonluminescing” porous Si by electrochemical etching (50 mA/cm2 in 50% HF diluted 1:1 with ethanol) of 1 Ω(100) p-type wafers in the absence of light in order to study the subsequent luminescence activation by postprocessing. The treatments are: photochemical etching, ageing under ambient conditions, thermal oxidation. The study reveals remarkable inhomogeneities in the depth distribution of the luminescence and allows us to comment on the relative importance of particle size, spin density and chemical composition for the luminescence.

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Youcef A. Bioud ◽  
Abderraouf Boucherif ◽  
Ali Belarouci ◽  
Etienne Paradis ◽  
Dominique Drouin ◽  
...  

2012 ◽  
Vol 584 ◽  
pp. 290-294 ◽  
Author(s):  
Jeyaprakash Pandiarajan ◽  
Natarajan Jeyakumaran ◽  
Natarajan Prithivikumaran

The promotion of silicon (Si) from being the key material for microelectronics to an interesting material for optoelectronic application is a consequence of the possibility to reduce its device dimensionally by a cheap and easy technique. In fact, electrochemical etching of Si under controlled conditions leads to the formation of nanocrystalline porous silicon (PS) where quantum confinement of photo excited carriers and surface species yield to a band gap opening and an increased radiative transition rate resulting in efficient light emission. In the present study, the nanostructured PS samples were prepared using anodic etching of p-type silicon. The effect of current density on structural and optical properties of PS, has been investigated. XRD studies confirm the presence of silicon nanocrystallites in the PS structure. By increasing the current density, the average estimated values of grain size are found to be decreased. SEM images indicate that the pores are surrounded by a thick columnar network of silicon walls. The observed PL spectra at room temperature for all the current densities confirm the formation of PS structures with nanocrystalline features. PL studies reveal that there is a prominent visible emission peak at 606 nm. The obtained variation of intensity in PL emission may be used for intensity varied light emitting diode applications. These studies confirm that the PS is a versatile material with potential for optoelectronics application.


2017 ◽  
Vol 68 (7) ◽  
pp. 53-57 ◽  
Author(s):  
Martin Kopani ◽  
Milan Mikula ◽  
Daniel Kosnac ◽  
Jan Gregus ◽  
Emil Pincik

AbstractThe morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHycomplexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHyand SiFxHycomplexes in the layer.


Author(s):  
Shereen M. Faraj ◽  
Shaimaa M. Abd Al-Baqi ◽  
Nasreen R. Jber ◽  
Johnny Fisher

Porous silicon (PS) has become the focus of attention in upgrading silicon for optoelectronics. In this work, various structures were produced depending on the formation parameters by photo-electrochemical etching (PECE) process of n- and p-type silicon wafer at different time durations (5–90 mins) and different current densities (5, 15, and 20 mA/cm2) for each set of time durations. Diode lasers of 405 nm, 473 nm, and 532 nm wavelengths, each 50 mW power, were used to illuminate the surface of the samples during the etching process. The results showed that controlled porous layers were achieved by using blue laser, giving uniform structure which can make it possible to dispense with expensive methods of patterning the silicon.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. Von Behren ◽  
P. M. Fauchet ◽  
E. H. Chimowitz ◽  
C. T. Lira

AbstractHighly luminescent free-standing porous silicon thin films of excellent optical quality have been manufactured by using electrochemical etching and lift-off steps combined with supercritical drying. One to 50 μm thick free-standing layers made from highly (p+) and moderately (p) Boron doped single crystal silicon (c-Si) substrates have been produced with porosities (P) up to 95 %. The Fabry-Pérot fringes observed in the transmission and photoluminescence (PL) spectra are used to determine the refractive index. At the highest P the index of refraction is below 1.2 from the IR to 2 eV. The absorption coefficients follow a nearly exponential behavior in the energy range from 1.2 eV and 4 eV. The porosity corrected absorption spectra of free-standing films made from p type c-Si substrates are blue shifted with respect to those prepared from p+ substrates. For P > 70 % a blue shift is also observed in PL. At equal porosities the luminescence intensities of porous silicon films made from p+ and p type c-Si are different by one order of magnitude.


2012 ◽  
Vol 576 ◽  
pp. 519-522 ◽  
Author(s):  
Fadzilah Suhaimi Husairi ◽  
Maslihan Ain Zubaidah ◽  
Shamsul Faez M. Yusop ◽  
Rusop Mahmood Mohamad ◽  
Saifolah Abdullah

This article reports on the electrical properties of porous silicon nanostructures (PSiNs) in term of its surface topography. In this study, the PsiNs samples were prepared by using different current density during the electrochemical etching of p-type silicon wafer. PSiNs has been investigated its electrical properties and resistances for different surface topography of PSiNs via current-voltage (I-V) measurement system (Keithley 2400) while its physical structural properties was investigated by using atomic force microscopy (AFM-XE100).


1993 ◽  
Vol 298 ◽  
Author(s):  
Y. Kanemitsu ◽  
T. Matsumoto ◽  
T. Futagi ◽  
H. Mimura

AbstractWe have studied the origin of the visible photoluminescence (PL) from oxidized porous Si. The hydrogen–passivated surface of porous Si prepared by electrochemical etching is converted to stable silicon oxides by rapid–thermal–oxidization processes. At low oxidation temperature (Tox), the PL spectrum with a peak near 700 nm is observed. At high Tox above 800 °C, a strong blue PL is observed near 400 nm. We discuss the origin of blue and red PL by employing the results of ab initio electronic structure calculations of silicon–oxygen compounds.


Author(s):  
Gyoko Nagayama ◽  
Ryuji Ando ◽  
Kei Muramatsu ◽  
Takaharu Tsuruta

We applied the anodic etching (i. e. photo assisted electrochemical etching) to the n type silicon substrate of orientation (100) without masking to fabricate macropores penetrated Si substrate. The anodic etching conditions of the macroporous formation were discussed and the effects of the resistivity, voltage, current density, electrolyte concentration and illumination etc. on the pore size and the porosity were investigated. The pores in high aspect ratio through the cross section of the silicon wafer were obtained with polishing and RIE (reactive ion etching) from the back side. It is found that the pore size at the back side is about 1.5 to 2 times larger than that of the front side. Also, as one example of the applications of porous silicon to microsystems, we demonstrate the results obtained in a micro fuel cell system using a porous silicon membrane (PSM). The PSM was fabricated by a porous silicon wafer which was filled with Nafion dispersion solution with ultrasonic vibrations. It was used as a proton conduction membrane by assembling into the H2 / air feed fuel cell at ambient conditions using conventional electrodes. We found that the Nafion filled PSM worked well and a maximum power density of 89.2 mW/cm2 were achieved under the flow rate of 100ml/min for H2 and 200ml/min for air.


1993 ◽  
Vol 297 ◽  
Author(s):  
T.J. Mc Mahon ◽  
Y. Xiao

We compare the electron spin resonance (ESR) signal of the dangling bond in porous silicon films, produced by electrochemical etching, to the ESR signal from hydrogenated amorphous Si (a-Si:H). The anisotropy of the ESR signal in porous Si showed g values varying as for the Pb Si/SiO2 interface dangling bond. The g value varies from g|| − 2.0020 to gL − 2.0080 with an inhomogeneously broadened line width increasing from 1.8 to 3.8 G. A porous Si ESR powder line, with superhyperfine and strain broadening intrinsic to porous Si, is compared to the a−Si:H dangling bond line. The result is more inhomogeneous broadening of line widths parallel and perpendicular to the dangling bond axis in a-Si:H, and less anisotropy in g|| − gL- No evidence was seen for light-induced metastability on a H-passivated porous Si film.


Sign in / Sign up

Export Citation Format

Share Document