Discharge-Pumped VUV F2 Molecular Laser Annealing of Heavily Se+-Implanted GaAs

1993 ◽  
Vol 316 ◽  
Author(s):  
Hajime Shibata ◽  
Yunosuke Makita ◽  
Kawakatsu Yamada ◽  
Yutaka Uchida ◽  
Sabro Satoh

ABSTRACTThe capability of discharge-pumped vacuum ultraviolet F2 molecular laser for laser annealing of heavily ion implanted semiconductor was demonstrated for the first time using Se+ heavily ion implanted GaAs. Cr-doped semi-insulationg GaAs wafers were used as the substrates, and the Se+ implantation energy and dose were controlled to 100 keV and 1× 1015 cm-2, respectively. Samples were annealed using a F2 molecular laser ( wavelength = 157 nm ) with a single pulse ( width ~ 20 ns ) in the energy density range from 200 to 800 mJ/cm2 in a nitrogen atmosphere. In addition, furnace annealing was done on separate samples at 850 ºC for 20 minutes in a purified hydrogen atmosphere for comparison. Characterization of the samples was carried out using Raman scattering and ellipsometry. The laser annealed samples exhibited intense Raman scattering LO phonon peaks whose intensity increased with increasing laser power density, whereas the furnace annealed samples exhibited a very weak LO phonon peak. It was demonstrated for the first time that VUV photons can be very effective in annealing ion implantation damage as compared with conventional furnace annealing. The behavior of Raman scattering spectra as a function of laser energy density was explained quantitatively by a “spatial correlation” model. The model made it possible to estimate the average size of the recovered crystal regions in samples for any given laser energy density.

Carbon ◽  
2020 ◽  
Vol 167 ◽  
pp. 504-511 ◽  
Author(s):  
Hiroki Yoshinaka ◽  
Seiko Inubushi ◽  
Takanori Wakita ◽  
Takayoshi Yokoya ◽  
Yuji Muraoka

Author(s):  
S Shiva ◽  
IA Palani ◽  
CP Paul ◽  
B Singh

Tailored structures of Ni-Ti shape memory alloys for micro-electro-mechanical systems can be fabricated using laser additive manufacturing, and requisite homogeneous microstructure for predictive design and fabrication of micro-electro-mechanical systems devices can be achieved by annealing. Investigation has been performed on the laser annealing of laser additive–manufactured Ni-Ti structures using a pulsed green laser through numerical simulation and experimental studies. The parametric dependence showed that a laser energy density of 1100 mJ cm−2 has a considerable influence in annealing of Ni-Ti structures. The surface morphology, phase transformation temperature and microstructure of laser-annealed Ni-Ti structures were studied with scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. Laser energy density of 1100 mJ cm−2 was used for annealing the samples as identified in the simulation. Surface annealing of Ni-Ti led to a uniform surface of the material with an increase in grain size and surface roughness. A decrease in the micro-hardness of the samples was obtained as a result of laser annealing. Thus, the investigations demonstrated the improved properties of laser additive–manufactured Ni-Ti structures by laser annealing.


1989 ◽  
Vol 164 ◽  
Author(s):  
K. Winer ◽  
R.Z. Bachrach ◽  
R.I. Johnson ◽  
S.E. Ready ◽  
G.B. Anderson ◽  
...  

AbstractThe effects of fast-pulse excimer laser annealing of a-Si:H were investigated by measurements of electronic transport properties and impurity concentration depth profiles as a function of incident laser energy density. The dc dark conductivity of laser-annealed, highly-doped a-Si:H increases by a factor of ∼350 above a sharp laser energy density threshold whose magnitude increases with decreasing impurity concentration and which correlates with the onset of hydrogen evolution from and crystallization of the near-surface layer. The similarities between the preparation and properties of laser-crystallized a-Si:H and pc-Si:H are discussed.


2001 ◽  
Vol 693 ◽  
Author(s):  
Man Young Sung ◽  
Woong-Je Sung ◽  
Yong-Il Lee ◽  
Chun-Il Park ◽  
Woo-Boem Choi ◽  
...  

Abstract:GaN thin films on sapphire were grown by RF magnetron sputtering with ZnO buffer layer. The tremendous mismatch between the lattices of GaN and sapphire can be partly overcome by the use of thin buffer layer of ZnO. The dependence of GaN film quality on ZnO buffer layer was investigated by X-ray diffraction(XRD). The properties of the sputtered GaN are strongly dependent on ZnO buffer layer thickness. The optimum thickness of ZnO buffer layer is around 30nm. Using XRD analysis, we have found the optimal substrate temperature which can grow high quality GaN thin film. In addition, the effect of excimer laser annealing(ELA) on structural and electrical properties of GaN thin films was investigated. The surface roughness and images according to the laser energy density were investigated by atomic force microscopy(AFM) and it was confirmed that the crystallization was improved by increasing laser energy density.


2013 ◽  
Vol 1505 ◽  
Author(s):  
Norihito Kawaguchi ◽  
Akihiko Yoshimura

ABSTRACTThe effects of the pulsed green laser annealing at ambient nitrogen for two different heights-CNWs grown on silicon substrate were investigated on the crystallinity and morphology using Raman spectroscopy, SEM, TEM and XPS. For the 1μm height-CNWs, the peak intensity of D-band spectra decreased as the laser energy density increased up to 1.3Jcm-2, ID/IG ratio decreased from 2.5 to 0.7. The crystallinity of CNWs was improved by the laser irradiation. For the 1μm height-CNWs irradiated above 1.5Jcm-2, the height of CNWs decreased gradually as the laser energy density increased, it was clarified that the surfaces of CNWs were vaporized by the laser irradiation. For the 20μm height-CNWs, the peak intensity of D band spectra also decreased until the laser energy density increased up to 0.8Jcm-2, ID/IG ratio decreased from 1.6 to 0.5. From the TEM observation of CNWs irradiated at 0.8 Jcm-2, it was confirmed that the laser irradiation changed CNWs to be highly oriented crystal structure. However above 0.8Jcm-2, the crystallinity was deteriorated due to the vaporization of CNWs as the same as the 1μm height-CNWs. The pulsed green laser annealing is effective to improve the crystallinity of CNWs on optimal laser energy density for both height-CNWs, the higher laser energy densities vaporized the CNWs and changed the morphology and crystallinity of CNWs.


1981 ◽  
Vol 4 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Bernard J. Feldman

ABSTRACTIn an effort to understand the origin of defects earlier found to be present in p–n junctions formed by pulsed laser annealing (PLA) of ion implanted (II) semiconducting GaAs, photoluminescence (PL) studies have been carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n–and p–type GaAs, for laser energy densities 0 ≤ El ≤ 0.6 J/cm2. It is found that PLA of crystalline (c−) GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing El. The variation of PL intensity with El is found to be different for n– and p–type material. No PL is observed from high dose (1 or 5×1015 ions/cm2 ) Sior Zn-implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.


Sign in / Sign up

Export Citation Format

Share Document