Ultrathin Nitride Films Grown Under Low-Energy Ion Bombardment

1993 ◽  
Vol 316 ◽  
Author(s):  
Zhong-Min Ren ◽  
Zhi-Feng Ying ◽  
Xia-Xing Xiong ◽  
Mao-Qi He ◽  
Yuan-Cheng DU ◽  
...  

ABSTRACTBombardment of silicon surfaces by low-energy nitrogen ions has been investigated as a possible process for growing films of silicon nitride at relatively low temperature(<500°C). Broad ion beams of energy 300–1200eV have been used to grow ultrathin silicon nitride films. Film thickness and chemical states are analyzed using ellipsometery, X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy(AES). As a result, thicknesses dependence on ion energy, substrate temperature and implantation time have been investigated. The thicknesses of films obtained appear to increase with ion energy in the range from 300 to 1200eV, and with time of bombardment. The thicknesses are also observed to vary slightly with substrate temperature. The growth mechanism has also been investigated and discussed. The average activation energy of nitridation rates is about 3.5meV which indicates nonthermal process kinetics, compared to an activation energy of 0.2–0.6eV for thermal nitridation. AES results show that the atomic ratio [N]/[Si] is about 1.5, larger than that of pure Si3N4. All the analyses show that silicon nitride films of about 60Å thickness have been grown on silicon by low-energy ion beam nitridation.

1990 ◽  
Vol 201 ◽  
Author(s):  
E. P. Donovan ◽  
C. A. Carosella ◽  
K. S. Grabowski ◽  
W. D. Coleman

AbstractSilicon nitride films (Si1−x,.Nx) have been deposited on silicon by simultaneous evaporation of silicon and bombardment of nitrogen ions. Films approximately 1 μm thick were deposited in an ambient nitrogen pressure of 50 μTorr. The substrate temperature (TSUB) ranged from nominally room temperature to 950° C for films with X between 0 and 0.6. Nitrogen atom fraction, X, was measured with Rutherford backscattering spectrometry (RBS). Refractive index was measured with near-IR reflection spectroscopy. Differences in film structure were measured by FT1R on the Si-N bond bending absorption mode, and by x-ray diffraction (XRD). X was found to depend upon the incident flux ratio of energetic nitrogen atoms to vapor silicon, and upon TSUB. Refractive index depends upon X and TSUB. XRD found evidence of the presence of amorphous structure, poly-crystalline silicon and (101) oriented β-Si3N4 depending on X and TSUB. The Si-N absorption signal increases with X and shows some structure at high TSUB.


1995 ◽  
Vol 61 (6) ◽  
pp. 643-644 ◽  
Author(s):  
Zhong-Min Ren ◽  
Fang Lu ◽  
Yuan-Cheng Du ◽  
Zhi-Feng Ying ◽  
Fu-Ming Li

2010 ◽  
Vol 150-151 ◽  
pp. 1391-1395 ◽  
Author(s):  
Feng Gao ◽  
Qing Nan Zhao ◽  
Xiu Jian Zhao ◽  
Yu Hong Dong

Silicon Nitride thin films were deposited on glass substrates by r.f. magnetron sputtering with a mixture gas of N2 and Ar. The properties of the thin films vs substrate temperature have been investigated. The phase structure, surface morphology, chemical composition, thickness and optical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis) and nkd-system spectrophotometer. The results show that the films appear amorphous and crystalline structure at the substrate temperature of 20 and 300 , respectively, the atomic ratio of Si to N of the films is nearly 1:1, the transmittance in the ultraviolet-visible region is above 75%; with increasing substrate temperature the refractive index and the optical band gap increase, and the deposition rates of the films decreases.


1995 ◽  
Vol 61 (6) ◽  
pp. 643-644
Author(s):  
Zhong-Min Ren ◽  
Fang Lu ◽  
Yuan-Cheng Du ◽  
Zhi-Feng Ying ◽  
Fu-Ming Li

1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


1996 ◽  
Vol 438 ◽  
Author(s):  
N. Tsubouchi ◽  
Y. Horino ◽  
B. Enders ◽  
A. Chayahara ◽  
A. Kinomura ◽  
...  

AbstractUsing a newly developed ion beam apparatus, PANDA (Positive And Negative ions Deposition Apparatus), carbon nitride films were prepared by simultaneous deposition of mass-analyzed low energy positive and negative ions such as C2-, N+, under ultra high vacuum conditions, in the order of 10−6 Pa on silicon wafer. The ion energy was varied from 50 to 400 eV. The film properties as a function of their beam energy were evaluated by Rutherford Backscattering Spectrometry (RBS), Fourier Transform Infrared spectroscopy (FTIR) and Raman scattering. From the results, it is suggested that the C-N triple bond contents in films depends on nitrogen ion energy.


2001 ◽  
Vol 19 (5) ◽  
pp. 2542-2548 ◽  
Author(s):  
M. P. Tsang ◽  
C. W. Ong ◽  
N. Chong ◽  
C. L. Choy ◽  
P. K. Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document