Fabrication and Characterization of MgO Bicrystals

1993 ◽  
Vol 318 ◽  
Author(s):  
Michael Liberatore ◽  
B.J. Wuensch ◽  
I.G. Solorzano ◽  
J.B. Vander Sande

ABSTRACTHigh purity bicrystals of MgO have been grown using chemical vapor transport for the purpose of studying oxygen grain boundary diffusion. Preliminary data indicate preferential diffusion of oxygen along ∑ 13 symmetric tilt boundaries. The measured grain boundary diffusivities were approximately 4 orders of magnitude higher than the corresponding bulk values. The activation energies for bulk and grain boundary diffusion were found to be equal to within experimental error, (≈3.9eV)

2006 ◽  
Vol 317-318 ◽  
pp. 415-418 ◽  
Author(s):  
Tsubasa Nakagawa ◽  
Isao Sakaguchi ◽  
Katsuyuki Matsunaga ◽  
Takahisa Yamamoto ◽  
Hajime Haneda ◽  
...  

Grain boundary diffusion coefficients of oxygen (δDgb) at 1793K in high purity α-alumina bicrystals with Σ7{2 _ ,310}/[0001] and Σ31{7 _ ,1140}/[0001] symmetric tilt grain boundaries were measured by means of the isotopic exchange and diffusion depth profiling using SIMS. δDgb of both grain boundaries were determined to be 7.1x10-24 [m3/sec] for Σ7 grain boundary and 5.3 x10-24 [m3/sec] for Σ31 grain boundary, respectively. These results indicate that Σ values do not directly relate to grain boundary diffusion properties.


1991 ◽  
Vol 239 ◽  
Author(s):  
H. G. Bohn ◽  
C. M. Su

ABSTRACT: Internal friction has been employed to characterize various properties of thin Al and Al-alloy films. The grain boundary relaxation peak was useda) to determine the activation energies for grain boundary diffusion in the alloy films,b) to investigate the influence of impurities on the grain boundary diffusion in Al at concentration levels as low as 300 ppm, andc) to get information about the adhesion strength between the film and the substrate.


1994 ◽  
Vol 357 ◽  
Author(s):  
Yong-Chae Chung ◽  
Bernhardt J. Wuensch

AbstractFabrication of NiO bicrystals having Σ5 (310) and Σ13 (510) coincidence-site tilt boundaries was successfully carried out by a CVT (Chemical Vapor Transport) method. The CVT method was a very advantageous way to grow ultra pure crystals since it preferentially transported NiO from the source pellet to the substrate by reaction with a HCl carrying gas. Single crystal MgO was used as a substrate for epitaxial growth of NiO as the readily available MgO crystals have only a 1% lattice mismatch with NiO. Moreover, MgO is soluble in acids while NiO is not. This permitted removal of the substrate crystal after growth to provide a free-standing NiO crystal. Using two single crystals of MgO with the desired tilt orientation as a substrate, NiO bicrystals were fabricated at growth rates greater than 100 μm/hour at 1,400K using 250 torr of HCI(g) as a carrying agent. The purity of the epitaxial NiO crystals was determined by mass spectrometry and neutron activation analysis. The grain boundary in the bicrystals is exactly perpendicular to the (100) growth surface. Highly-reflective facets along the growth direction suggest high mechanical quality. High-resolution transmission electron microscopy of the Σ13 boundary revealed structure at the atomic scale that provided no evidence for segregated phases.


The results of atomistic calculations of long-period tilt boundaries, which were reported in the preceding parts I and II, are generalized and represented concisely by using two-dimensional lattices, called decomposition lattices. The basis vectors of a decomposition lattice characterize the two fundamental structural elements composing all boundaries in a continuous series of boundary structures. Conversely, the governing condition on the basis vectors is that the boundary structure can change continuously throughout the misorientation range between the boundaries represented by the basis vectors. On assuming that no discontinuous changes in boundary structure occur at non-favoured boundary orientations, and that all boundaries considered are stable with respect to faceting, the governing condition may be used to deduce selection rules for adjacent favoured boundaries and the existence of other favoured boundaries in the misorientation range between two given favoured boundaries. The necessary condition for a discontinuous change in boundary structure to be possible at a non-favoured boundary orientation is formulated. Various aspects of intrinsic and extrinsic grain boundary dislocations (g.b.ds) are treated. It is first shown that the observation of intrinsic g.b.d. networks in the transmission electron microscope does not necessarily imply that the reference structure, preserved by those g.b.ds, is a favoured boundary. Secondly, it is argued that extrinsic g.b.ds provide imperfect steps with Burgers vector components parallel to the boundary that do not exist in equilibrium high-angle tilt boundaries. Finally, an explanation of the physical basis of plane matching dislocations is proposed. A general classification of grain boundary properties is introduced that is based on the results of this investigation of grain boundary structure. It is argued that only properties, such as grain boundary diffusion, that depend exclusively on the atomic structure of the boundary core may be used to detect favoured boundaries. Favoured boundaries exist at those misorientations where such a property is continuous but its first derivative, with respect to misorientation, is not. Grain boundary diffusion, the energy against misorientation relation and grain boundary sliding and migration are then discussed.


1987 ◽  
Vol 106 ◽  
Author(s):  
J. P. Lavine ◽  
S.-T. Lee ◽  
D. L. Black ◽  
D. L. Losee ◽  
C. M. Jarman

ABSTRACTPhosphorus ions were implanted into silicon layers deposited by low pressure chemical vapor deposition onto thermally oxidized silicon substrates. Thermal anneals diffused the phosphorus and the resulting depth profiles were determined by secondary-ion mass spectrometry (SIMS). Transmission electron microscopy shows that the polysilicon layers have a multi-layer pattern of grains. The phosphorus profiles are fit by a Monte Carlo simulation technique that includes both grain and grain-boundary diffusion. The grain-boundary diffusion coefficient is found to be thermally activated with an activation energy of 3.3 eV.


1990 ◽  
Vol 51 (C1) ◽  
pp. C1-691-C1-696 ◽  
Author(s):  
K. VIEREGGE ◽  
R. WILLECKE ◽  
Chr. HERZIG

2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

Sign in / Sign up

Export Citation Format

Share Document