Amorphous Silicon Crystallization For Tft Applications

1993 ◽  
Vol 321 ◽  
Author(s):  
J. Yi ◽  
R. Wallace ◽  
N. Sridhar ◽  
D. D. L. Chung ◽  
W. A. Anderson

ABSTRACTThin film hydrogenated Amorphous silicon (a-Si:H) was deposited on Molybdenum (Mo) substrates by d.c. glow discharge. We investigated the a-Si:H crystallization using four anneal techniques; nitrogen atmosphere furnace, vacuum, rapid thermal anneal (RTA), and excimer laser anneal. Anneal temperature ranged from 100 to 1200 °C. Excimer laser energy per pulse ranged from 90 to 340 M.J. Transmission electron Microscopy (TEM) revealed microstructure of crystallized Si film with grain size over 0.5 μm. X-ray diffraction (XRD) and Raman spectroscopy were employed to determine the degree of crystallization. The a-Si:H started to crystallize at temperatures over 600 °C. An 850 °C anneal reduced film resistivity to 10s (ω-cm) for intrinsic and 1 (ω-cm) for n-type. Coplanar type thin film transistors (TFT) with gate channel length of 25 μm and width of 220 μm were fabricated with various insulating layers; if sputtered SiO2, Si3N4, BaTiO3, MgO, and evaporated SiO. The first two exhibited the least leakage current. The as-grown intrinsic a-Si:H field effect mobility was around 0.03 (cmVV.s) and delay time was 5×10−7 s. The solid phase crystallized silicon film exhibited high leakage current. The delay time of an excimer laser anneal treated TFT was reduced to 2.5×10−7 s. Crystallized Si film mobility was improved to 15 (cm2 /V.s).

1992 ◽  
Vol 283 ◽  
Author(s):  
Takako K. Okada ◽  
Shigeru Kambayashi ◽  
Moto Yabuki ◽  
Yoshitaka Tsunashima ◽  
Yuichi Mirata ◽  
...  

ABSTRACTA new concept of thin film growth/regrowth process design taking atomic motions into account using molecular dynamics is proposed. In the system, a modified many-body Tersoff-type interatomic potential for silicon has been adopted. The mathematical derivation of higher order derivatives was rigorously treated. Among many applications, the solid phase growth process was studied. It has been found from simulation studies that the solid phase growth of crystalline silicon proceeded along the [110] direction layer by layer. Furthermore, it has been obtained that all the atoms are activated in an extremely thin amorphous silicon film. Based on simulated results, an experiment using an extremely thin amorphous silicon film was carried out. It has been found that the perfect spherical silicon crystals with a uniform size and spacing can be grown from a thin amorphous silicon film.


2007 ◽  
Vol 124-126 ◽  
pp. 259-262
Author(s):  
Jae Hong Jeon ◽  
Kang Woong Lee

We investigated the effect of amorphous silicon pattern design regarding to light induced leakage current in amorphous silicon thin film transistor. In addition to conventional design, where amorphous silicon layer is protruding outside the gate electrode, we designed and fabricated amorphous silicon thin film transistors in another two types of bottom gated structure. The one is that the amorphous silicon layer is located completely inside the gate electrode and the other is that the amorphous silicon layer is protruding outside the gate electrode but covered completely by the source and drain electrode. Measurement of the light induced leakage current caused by backlight revealed that the design where the amorphous silicon is located inside the gate electrode was the most effective however the last design was also effective in reducing the leakage current about one order lower than that of the conventional design.


2015 ◽  
Vol 780 ◽  
pp. 17-21
Author(s):  
A.F.M. Anuar ◽  
Yufridin Wahab ◽  
M.Z. Zainol ◽  
H. Fazmir ◽  
M. Najmi ◽  
...  

A simple theoretical model and resistor fabrication for calculating the resistance of a polycrystalline silicon thin film is presented. The resistance value for poly-resistor is perfomed in terms of polysilicon thickness and its total area. The KrF excimer laser micromachine is used in assisting the resistor formation for a low pressure chemical vapor deposition (LPCVD) based polysilicon. Laser micromachine with three main parameters is used to aid the fabrication of the poly-resistor; namely as the pulse rate (i.e. number of laser pulses per second), laser beam size and laser energy. These parameters have been investigated to create the isolation between materials and also to achieve the desired poly-resistor shape. Preliminary results show that the 35 um beam size and 15 mJ of energy level is the most effective parameter to produce the pattern. Poly-resistor formation with 12 and 21 number of squares shows the total average resistance of 303.52 Ω and 210.14 Ω respectively. The laser micromachine process also significantly reduce the total time and number of process steps that are required for resistor fabrication.


1989 ◽  
Vol 149 ◽  
Author(s):  
S. E. Ready ◽  
J. B. Boyce ◽  
R. Z. Bachrach ◽  
R. I. Johnson ◽  
K. Winer ◽  
...  

ABSTRACTIn an effort to enhance the electrical properties of silicon thin films, we have performed recrystallization experiments on a variety of amorphous silicon films using an excimer laser. The intense, pulsed UV produced by the laser (308nm, using XeCl gas) is highly absorbed by the amorphous material and thus provides intense localized heating in the near surface region. Two types of starting films were studied: plasma CVD a-Si:H and LPCVD a-Si. The subsequent modification produces crystallites whose structure and electrical characteristics vary due to starting material and laser scan parameters. The treated films have been characterized using Raman, x-ray diffraction, TEM, SIMS and transport measurements. The results indicate that crystallites nucleate in the surface region. The degree of crystallization near the surface increases dramatically as a function of deposited laser energy density and less so as a function of laser shot density. The hall mobility of the highly crystallized samples exhibit an increase of 2 orders of magnitude over the amorphous starting material. In the PECVD material, the rapid diffusion of hydrogen causes voids to be formed at intermediate laser energy densities and removal of film at higher energy densities. The LPCVD material withstands the high laser energies to produce well crystallized films with crystallite sizes greater then 1000Å.


1990 ◽  
Vol 29 (Part 2, No. 10) ◽  
pp. L1775-L1777 ◽  
Author(s):  
Kazuhiro Shimizu ◽  
Osamu Sugiura ◽  
Masakiyo Matsumura

1999 ◽  
Vol 67-68 ◽  
pp. 541-546
Author(s):  
B. Tala-Ighil ◽  
A. Rahal ◽  
H. Toutah ◽  
T. Mohammed-Brahim ◽  
K. Mourgues ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document