Growth Studies and X-Ray Topographical Assessment of KTP

1993 ◽  
Vol 329 ◽  
Author(s):  
K B Hutton ◽  
R C C Ward ◽  
K W Godfrey

AbstractDevice quality single crystals of potassium titanyl phosphate (KTP) have been grown using a top seeded solution growth method which incorporates a crystal weighing facility and which takes advantage of saturation temperatures well below the accepted transition temperature of this material. Weight and crucible temperature data are received and displayed on a monitoring computer in the form of a growth profile. Results obtained from the growth programme are discussed including the effect of very slow cooling (< 0.03 °C/hr) on the control of growth quality and a study of growth defects using x-ray diffraction topography carried out using synchrotron radiation. Variations on the standard K6P4O13 flux were investigated, including the addition of CeO2 to improve optical transmission and the use of K7P3O11 as an alternative growth solution.

2005 ◽  
Vol 38 (4) ◽  
pp. 675-677 ◽  
Author(s):  
Kunpeng Wang ◽  
Jianxiu Zhang ◽  
Jiyang Wang ◽  
Changshui Fang ◽  
Wentao Yu ◽  
...  

High-quality CePO4single crystals (monazite) were grown by the flux TSSG (top-seeded-solution growth) slow-cooling method. The X-ray powder diffraction pattern shows good crystalline quality of the crystals and the various peaks were assigned. The unit-cell parameters were calculated using theDICVOL90andTERORcomputer programs. The concentrations of all elements in the crystals were measured by electron probe microanalysis. Growth habits were deduced by the Bravais–Friedel Donnay–Harker (BFDH) method and macro-defects in the crystals are discussed. An infrared spectrum of the crystal was recorded in the frequency range of 300 to 1600 cm−1and all vibration frequency peaks were assigned.


Author(s):  
Thu Hoai Le ◽  
Neil R. Brooks ◽  
Koen Binnemans ◽  
Bart Blanpain ◽  
Muxing Guo ◽  
...  

The title compound, Ca2+xNd8–x(SiO4)6O2–0.5x(x= 0.49), was synthesized at 1873 K and rapidly quenched to room temperature. Its structure has been determined using single-crystal X-ray diffraction and compared with results reported using neutron and X-ray powder diffraction from samples prepared by slow cooling. The single-crystal structure from room temperature data was found to belong to the space groupP63/mand has the composition Ca2.49Nd7.51(SiO4)6O1.75[dicalcium octaneodymium hexakis(orthosilicate) dioxide], being isotypic with natural apatite and the previously reported Ca2Nd8(SiO4)6O2and Ca2.2Nd7.8(SiO4)6O1.9. The solubility limit of calcium in the equilibrium state at 1873 K was found to occur at a composition of Ca2+xNd8–x(SiO4)6O2–0.5x, wherex= 0.49.


2003 ◽  
Vol 59 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Stefan T. Norberg ◽  
Alexander N. Sobolev ◽  
Victor A. Streltsov

An accurate structure model of sodium-doped potassium titanyl phosphate, (Na0.114K0.886)K(TiO)2(PO4)2, has been determined at 10.5 K by single-crystal X-ray diffraction. In addition to the low-temperature data, X-ray intensities have been collected at room temperature. When the temperature was decreased from room temperature to 10.5 K, both potassium cations moved 0.033 (2) Å along the c-axis, i.e. in the polar direction within the rigid Ti—O—P network. This alkaline metal ion displacement can be related to the Abrahams–Jamieson–Kurtz T C criteria for oxygen framework ferroelectrics. Potassium titanyl phosphate (KTP) is a well known material for second harmonic generation (SHG), and the influence of sodium dopant on the TiO6 octahedral geometry and SHG is discussed. The material studied crystallizes in the space group Pna21 with Z = 4, a = 12.7919 (5), b = 6.3798 (4), c = 10.5880 (7) Å, V = 864.08 (9) Å3, T = 10.5 (3) K and R = 0.023.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


2004 ◽  
Vol 848 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Erin E. Erickson ◽  
Monica Moldovan ◽  
David P. Young ◽  
Julia Y. Chan

AbstractA new member of the LnMIn5 family, ErCoIn5, has been synthesized by a flux-growth method. The structure of ErCoIn5 was determined by single crystal X-ray diffraction. It crystallizes in the tetragonal space group P4/mmm, Z = 1, with lattice parameters a = 4.5400(4) and c = 7.3970(7) Å, and V = 152.46(2) Å3. Electrical resistivity data show metallic behavior. Magnetic susceptibility measurements show this compound to be antiferromagnetic with TN = 5.1 K. We compare these experimental results with those of LaCoIn5 in an effort to better understand the effect of the structural trends observed on the transport and magnetic properties.


2006 ◽  
Vol 11-12 ◽  
pp. 159-162 ◽  
Author(s):  
Yong Ge Cao ◽  
Lei Miao ◽  
Sakae Tanemura ◽  
Yasuhiko Hayashi ◽  
Masaki Tanemura

Transparent indium-doped ZnO (IZO) films with low In content (<6at%) were fabricated through radio-frequency (rf) helicon magnetron sputtering. Formation of In-Zn-O solid solution was confirmed by X-ray diffraction (XRD) patterns. Incorporation of indium into ZnO films enhances the optical transmission in the visible wavelength. The optical band-gaps slightly increase from 3.25eV (ZnO) to 3.28eV (In0.04Zn0.96O) and to 3.30eV (In0.06Zn0.94O) due to Burstain-Moss effect. The Urbach tail parameter E0, which is believed to be a function of structural disorder, increases from 79meV (ZnO), to 146meV (In0.04Zn0.96O), and to 173meV (In0.06Zn0.94O), which is consistent with increase of Full-Width Half-Maximum (FWHM) in corresponding XRD patterns. Decreasing in crystal quality with increasing indium concentration is also confirmed by photoluminescence spectra.


2009 ◽  
Vol 42 (5) ◽  
pp. 944-952 ◽  
Author(s):  
Matthew Warkentin ◽  
Robert E. Thorne

Cryoprotectant-free thaumatin crystals have been cooled from 300 to 100 K at a rate of 0.1 K s−1– 103–104times slower than in conventional flash cooling – while continuously collecting X-ray diffraction data, so as to follow the evolution of protein lattice and solvent properties during cooling. Diffraction patterns show no evidence of crystalline ice at any temperature. This indicates that the lattice of protein molecules is itself an excellent cryoprotectant, and with sodium potassium tartrate incorporated from the 1.5 Mmother liquor ice nucleation rates are at least as low as in a 70% glycerol solution. Crystal quality during slow cooling remains high, with an average mosaicity at 100 K of 0.2°. Most of the mosaicity increase occurs above ∼200 K, where the solvent is still liquid, and is concurrent with an anisotropic contraction of the unit cell. Near 180 K a crossover to solid-like solvent behavior occurs, and on further cooling there is no additional degradation of crystal order. The variation ofBfactor with temperature shows clear evidence of a protein dynamical transition near 210 K, and at lower temperatures the slope dB/dTis a factor of 3–6 smaller than has been reported for any other protein. These results establish the feasibility of fully temperature controlled studies of protein structure and dynamics between 300 and 100 K.


Sign in / Sign up

Export Citation Format

Share Document