Effect of Minor Additives on First Stage Graphitisation in White Cast Iron

1984 ◽  
Vol 34 ◽  
Author(s):  
P. L. Roy ◽  
A. K. Chakrabart ◽  
P. Banerjee

ABSTRACTMinor additions (0.05-0.2 wt.%) of sodium chloride, hexachloroethane and elemental sulphur to commercial white iron melts have been found to enhance the kinetics of first stage graphitisation during subsequent annealing of white iron samples. The optimum dose of sodium chloride and hexachloroethane addition is around 0.1%. Yield strength and ductility of annealed test bars treated with NaCl or C2Cl6 compare favourably with those of untreated test bars. Sulphur treatment causes slight deterioration in mechanical properties. Fully grown nodules in both treated and untreated samples appear porous under SEM. Possible mechanisms of acceleration of graphitisation in the treated samples have been suggested.

2016 ◽  
Author(s):  
F. Nurjaman ◽  
S. Sumardi ◽  
A. Shofi ◽  
M. Aryati ◽  
B. Suharno

1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


2014 ◽  
Vol 697 ◽  
pp. 72-75
Author(s):  
De Liang Yin ◽  
Jian Qiao ◽  
Hong Liang Cui

An extruded ZK60 magnesium alloy was subjected to artificial aging at 180 oC for an investigation of the effect of aging time on its precipitation behavior and mechanical properties. Uniaxial tensile tests were conducted to obtain the mechanical properties. Optical microscopy and transmission electron microscopy (TEM) were employed to observe microstructure change before and after aging treatment. It is shown that, both tensile yield strength and ultimate tensile strength increases with aging time. The fracture elongation after aging for 20 h reaches up to 21.0%, and the yield strength increases to 269.5 MPa, 19.4% higher than that of extruded specimens (un-aged), showing a good match of strength and ductility. Three newly-formed precipitates were observed after aging for over 20 h, among which particulate and dispersive precipitates should be responsible for the good combination of strength and ductility.


2011 ◽  
Vol 18 (11) ◽  
pp. 31-39 ◽  
Author(s):  
Havva Kazdal Zeytin ◽  
Hakan Yildirim ◽  
Banu Berme ◽  
Selim Duduoĝlu ◽  
Gürkan Kazdal ◽  
...  

Author(s):  
Julieta Kaleicheva ◽  
Krasimir Kirov ◽  
Valentin Plamenov Mishev ◽  
Zdravka Karaguiozova

The microstructure and mechanical properties of high chromium white cast iron with composition: 2,6÷3,4% C; 0,9÷1,1% Si; 0,8÷1,1% Mn; 1,0÷1,3% Mo; 12,3÷13,4% Cr, additionally doped with boron in an amount of 0,18% to 1,25% is investigated. The microstructure of six compositions of white cast irons is studied by means of an optical metallographic analysis - one without boron, and the others contain 0,18%; 0,23%; 0,59%; 0,96% and 1,25% boron. A test is performed to determine: hardness by the Rockwell method; microhardness; bending strength and impact toughness. It was found that at a boron content of 0,18%; 0,23% and 0,59%, the structure of white cast irons is subeutectic, with impact toughness in the range of 1,80÷1,52 J/cm2; with a boron content of 0,96%, the structure of white cast iron is close to the eutectic, with impact toughness 0,98 J/cm2 ; at a boron content of 1,25% the structure of white cast iron is supereutectic and the impact toughness decreases to 0,68 J/cm2. With a change in the boron content from 0,8% to 1,25%, the amount of carbide phase in the structure of white cast iron increases, which leads to an increase in hardness from 53 to 59 HRC. The highest bending strength (Rmi=660,85 MPa) was obtained in white cast irons with a boron content of 0,23%. 


2020 ◽  
pp. 1-5
Author(s):  
Adejo O H ◽  
◽  
Ojo S A ◽  
Uzuh F U ◽  
Abere D V ◽  
...  

Reinforcement steel bars are often exposed to the atmosphere before use in concrete structures. This exposure results in corrosion of these reinforcement bars. Corrosion of reinforcement bars is a common form of degradation of reinforced concrete structures. The electrochemical attack affects the mechanical properties of steel rebars. This study analysed the effect of exposing reinforcing steel bars to the atmosphere. The bars were divided into two; one part was exposed to the atmosphere for a period of four months during the rainy season while the other was unexposed. Afterwards; some mechanical, corrosion and metallographic tests were carried out on the steel samples. The results obtained showed that the hardness, impact strength and ductility increased with exposure while the yield and tensile strengths decreased with exposure. The exposed bar had high corrosion rates than the unexposed bar in 1M hydrochloric acid (HCl) while in 1M sodium chloride (NaCl), the corrosion rates for both the exposed and unexposed bars did not follow a particular trend


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Jeison Bucurú-Vasco ◽  
Andrés Felipe Loaiza-Patiño ◽  
Mónica Johanna Monsalve-Arias ◽  
Dairo Hernán Mesa-Grajales

This paper studies the influence of variables such as holding temperatures and times during austempering of High Chromium White Cast Iron (HCWCI), with the following chemical composition: Cr 25 %, C 3 %, Si 0.47 %, Mn 0.74 % and Mo 1.02 %. The aim of the austempering was to modify the percentage of retained austenite and its correlation to abrasive wear resistance under different conditions.Microhardness tests, SEM-EDS and XRD were performed to determine mechanical properties, chemical composition, and type of carbides and microstructures present, respectively. The tests complied with the ASTM G-65 standard. Results showed that the best performance against abrasion was achieved for austempering at 450 ºC with holding time of 6 hours.


Sign in / Sign up

Export Citation Format

Share Document