scholarly journals In Situ, Real-Time Analysis of the Growth of Ferroelectric and Conductive Oxide Heterostructures by a New Time-of-Flight Pulsed Ion Beam Surface Analysis Technique

1994 ◽  
Vol 341 ◽  
Author(s):  
Orlando Auciello ◽  
A. R. Krauss ◽  
Y. Lin ◽  
R. P. H. Chang ◽  
D. M. Gruen

AbstractA new time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) technique has been developed and is now used to perform in situ, real-time analysis of ferroelectric and conductive oxide layers during growth. Initial results presented here show various major effects, namely: (a) RuO2 films on MgO substrates appear to be terminated in O atoms on the top layer located in between Ru atoms lying in the layer underneath (This effect may have major implications for the explanation of the elimination of polarization fatigue demonstrated for RuO2/PZT/RuO2 heterostructure capacitors); (b) deposition of a Ru monolayer on top of a Pb monolayer results in surface segregation of Pb until a complete Pb layer develops over the Ru monolayer; and (c) a Pb/Zr/Ti layered structure yields a top Pb layer with first evidence of the existence of Pb vacancies, which also may have major implications in relation to the electrical characteristics of PZT-based capacitors.

1999 ◽  
Vol 569 ◽  
Author(s):  
V.S. Smentkowskiv ◽  
A. R. Krauss ◽  
O. Auciello ◽  
J. Im ◽  
D.M. Gruen ◽  
...  

ABSTRACTTime-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1–2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is a variant of DRS capable of isotopic resolution for all surface species - including H and He. The advantages and limitations of each of these techniques will be discussed.The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dual functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.


1994 ◽  
Vol 12 (4) ◽  
pp. 1943-1951 ◽  
Author(s):  
A. R. Krauss ◽  
Y. Lin ◽  
O. Auciello ◽  
G. J. Lamich ◽  
D. M. Gruen ◽  
...  

Vacuum ◽  
2006 ◽  
Vol 81 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Gou ◽  
M.A. Gleeson ◽  
J. Villette ◽  
A.W. Kleyn
Keyword(s):  

1999 ◽  
Vol 569 ◽  
Author(s):  
A.H. Mueller ◽  
Y. Gao ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTIn-situ real time characterization of chemically and structurally complex thin films is becoming important as complex materials are finding more applications in electronic devices. To this end, a unique thin film growth and deposition system was constructed combining a multi-target sputter deposition system with spectroscopic ellipsometry and time-of-flight ion scattering and recoil spectroscopy. This system is demonstrated with studies on YBa2Cu3O7−δand BaSrTiO3 films.


1991 ◽  
Vol 222 ◽  
Author(s):  
B. Johs ◽  
J. L. Edwards ◽  
K. T. Shiralagi ◽  
R. Droopad ◽  
K. Y. Choi ◽  
...  

ABSTRACTA modular spectroscopic ellipsometer, capable of both in-situ and ex-situ operation, has been used to measure important growth parameters of GaAs/AIGaAs structures. The ex-situ measurements provided layer thicknesses and compositions of the grown structures. In-situ ellipsometric measurements allowed the determination of growth rates, layer thicknesses, and high temperature optical constants. By performing a regression analysis of the in-situ data in real-time, the thickness and composition of an AIGaAs layer were extracted during the MBE growth of the structure.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6425
Author(s):  
Daniel Ledwoń ◽  
Marta Danch-Wierzchowska ◽  
Marcin Bugdol ◽  
Karol Bibrowicz ◽  
Tomasz Szurmik ◽  
...  

Postural disorders, their prevention, and therapies are still growing modern problems. The currently used diagnostic methods are questionable due to the exposure to side effects (radiological methods) as well as being time-consuming and subjective (manual methods). Although the computer-aided diagnosis of posture disorders is well developed, there is still the need to improve existing solutions, search for new measurement methods, and create new algorithms for data processing. Based on point clouds from a Time-of-Flight camera, the presented method allows a non-contact, real-time detection of anatomical landmarks on the subject’s back and, thus, an objective determination of trunk surface metrics. Based on a comparison of the obtained results with the evaluation of three independent experts, the accuracy of the obtained results was confirmed. The average distance between the expert indications and method results for all landmarks was 27.73 mm. A direct comparison showed that the compared differences were statically significantly different; however, the effect was negligible. Compared with other automatic anatomical landmark detection methods, ours has a similar accuracy with the possibility of real-time analysis. The advantages of the presented method are non-invasiveness, non-contact, and the possibility of continuous observation, also during exercise. The proposed solution is another step in the general trend of objectivization in physiotherapeutic diagnostics.


Gamification ◽  
2015 ◽  
pp. 1936-1949 ◽  
Author(s):  
Oliver Korn ◽  
Markus Funk ◽  
Albrecht Schmidt

Recent advances in motion recognition allow the development of Context-Aware Assistive Systems (CAAS) for industrial workplaces that go far beyond the state of the art: they can capture a user's movement in real-time and provide adequate feedback. Thus, CAAS can address important questions, like Which part is assembled next? Where do I fasten it? Did an error occur? Did I process the part in time? These new CAAS can also make use of projectors to display the feedback within the corresponding area on the workspace (in-situ). Furthermore, the real-time analysis of work processes allows the implementation of motivating elements (gamification) into the repetitive work routines that are common in manual production. In this chapter, the authors first describe the relevant backgrounds from industry, computer science, and psychology. They then briefly introduce a precedent implementation of CAAS and its inherent problems. The authors then provide a generic model of CAAS and finally present a revised and improved implementation.


1993 ◽  
Vol 316 ◽  
Author(s):  
E.N. Shauly ◽  
E. Koltin ◽  
I. Munin ◽  
Y. Avrahamov

ABSTRACTIon implantation in semiconductor devices frequently leads to a substantial wafer surface charge build up. Control of this charge during high current implantation is a major process issue, as it may affect the yield and reliability of thin dielectric layers. In addition, the charge build up may affect the ion beam resulting in a non-uniform implant and a reduction in device yield. Control of a specific machine parameter, that will give the charge condition of the ion implanter will enable to neutralize the charge build up.In this study, Disk Current Monitoring (DCM) is shown to be a reliable method for monitoring the Electron Shower (ES) performance in real time. A correlation was found between DCM level and yields, and between DCM level and breakdown voltage, as well as different maintenance activities regarding me ES. A simple 5 steps method is described to achieve a reliable, real time charge monitor, to insure operation within the “High Yield Range”.


Sign in / Sign up

Export Citation Format

Share Document