scholarly journals Real-Time Back Surface Landmark Determination Using a Time-of-Flight Camera

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6425
Author(s):  
Daniel Ledwoń ◽  
Marta Danch-Wierzchowska ◽  
Marcin Bugdol ◽  
Karol Bibrowicz ◽  
Tomasz Szurmik ◽  
...  

Postural disorders, their prevention, and therapies are still growing modern problems. The currently used diagnostic methods are questionable due to the exposure to side effects (radiological methods) as well as being time-consuming and subjective (manual methods). Although the computer-aided diagnosis of posture disorders is well developed, there is still the need to improve existing solutions, search for new measurement methods, and create new algorithms for data processing. Based on point clouds from a Time-of-Flight camera, the presented method allows a non-contact, real-time detection of anatomical landmarks on the subject’s back and, thus, an objective determination of trunk surface metrics. Based on a comparison of the obtained results with the evaluation of three independent experts, the accuracy of the obtained results was confirmed. The average distance between the expert indications and method results for all landmarks was 27.73 mm. A direct comparison showed that the compared differences were statically significantly different; however, the effect was negligible. Compared with other automatic anatomical landmark detection methods, ours has a similar accuracy with the possibility of real-time analysis. The advantages of the presented method are non-invasiveness, non-contact, and the possibility of continuous observation, also during exercise. The proposed solution is another step in the general trend of objectivization in physiotherapeutic diagnostics.

Author(s):  
Lai-Bin Zhang ◽  
Zhao-Hui Wang ◽  
Wei Liang

Oil and gas transportation pipelines are the key equipment in petroleum and chemical industry. At present, with the increase of transportation task in oil fields, real-time leak detection system becomes a demand that petroleum companies need to safeguard routines. At the heart of the leakage monitoring and detection procedures are the report of leakage event timely and of leakage point precisely. This paper presents a more realistic approach for using rarefaction-pressure wave technique in oil pipelines, which aims to two targets, one is the improvement of remote and intelligent degree, and the other is the improvement of the leakage location ability. This paper introduces a new scheme to meet the requirements of real time and high data transferring necessary for remote monitoring and leak detection methods for pipelines. The scheme is based on SCADA framework for remote pipeline leakage diagnosis, in which the Dynamic Data Exchange technology is utilized to construct the data-acquiring component to acquire the real-time information that could perform remote test and analysis. It also introduces a basic concept and structure of the remote leak detection system. Primarily, an embedded leak-detection package is designed to exchange the diagnostic information with the RTU data package of Modbus protocol, and then via fiber network, the SCADA-based remote monitoring and leak detection system is realized. Existing data acquisition apparatus applied in oil fields and city underground water pipeline is used, without changing the structure of pipeline supervisory system. This paper introduces the method of constructing DDE-based hot links between servers and client terminals, using Borland C++ Builder 6.0 development environment, and also explains the universality and friendliness of the method. It can easily access similar Windows’ applications simply by modifying Service names, Topic options and data Items. System feasibility was tested using negative-pressure data from oil-fields. Additionally, the applied results show that the whole running status of pipeline can be monitored effectively, and a higher automation grade and an excellent leak location precision of the system can be obtained.


1994 ◽  
Vol 341 ◽  
Author(s):  
Orlando Auciello ◽  
A. R. Krauss ◽  
Y. Lin ◽  
R. P. H. Chang ◽  
D. M. Gruen

AbstractA new time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) technique has been developed and is now used to perform in situ, real-time analysis of ferroelectric and conductive oxide layers during growth. Initial results presented here show various major effects, namely: (a) RuO2 films on MgO substrates appear to be terminated in O atoms on the top layer located in between Ru atoms lying in the layer underneath (This effect may have major implications for the explanation of the elimination of polarization fatigue demonstrated for RuO2/PZT/RuO2 heterostructure capacitors); (b) deposition of a Ru monolayer on top of a Pb monolayer results in surface segregation of Pb until a complete Pb layer develops over the Ru monolayer; and (c) a Pb/Zr/Ti layered structure yields a top Pb layer with first evidence of the existence of Pb vacancies, which also may have major implications in relation to the electrical characteristics of PZT-based capacitors.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 664
Author(s):  
Zhihong Ma ◽  
Dawei Sun ◽  
Haixia Xu ◽  
Yueming Zhu ◽  
Yong He ◽  
...  

Three-dimensional (3D) structure is an important morphological trait of plants for describing their growth and biotic/abiotic stress responses. Various methods have been developed for obtaining 3D plant data, but the data quality and equipment costs are the main factors limiting their development. Here, we propose a method to improve the quality of 3D plant data using the time-of-flight (TOF) camera Kinect V2. A K-dimension (k-d) tree was applied to spatial topological relationships for searching points. Background noise points were then removed with a minimum oriented bounding box (MOBB) with a pass-through filter, while outliers and flying pixel points were removed based on viewpoints and surface normals. After being smoothed with the bilateral filter, the 3D plant data were registered and meshed. We adjusted the mesh patches to eliminate layered points. The results showed that the patches were closer. The average distance between the patches was 1.88 × 10−3 m, and the average angle was 17.64°, which were 54.97% and 48.33% of those values before optimization. The proposed method performed better in reducing noise and the local layered-points phenomenon, and it could help to more accurately determine 3D structure parameters from point clouds and mesh models.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 273
Author(s):  
Alfredo Diaz-Lara ◽  
Kristian Stevens ◽  
Vicki Klaassen ◽  
Deborah Golino ◽  
Maher Al Rwahnih

Viruses can cause economic losses in fruit trees, including Prunus spp., by reducing yield and marketable fruit. Given the genetic diversity of viruses, reliable diagnostic methods relying on PCR are critical in determining viral infection in fruit trees. This study evaluated the broad-range detection capacity of currently available real-time RT-PCR assays for Prunus-infecting viruses and developed new assays when current tests were inadequate or absent. Available assays for 15 different viruses were exhaustively evaluated in silico to determine their capacity to detect virus isolates deposited in GenBank. During this evaluation, several isolates deposited since the assay was designed exhibited nucleotide mismatches in relation to the existing assay’s primer sequences. In cases where updating an existing assay was impractical, we performed a redesign with the dual goals of assay compactness and comprehensive inclusion of genetic diversity. The efficiency of each developed assay was determined by a standard curve. To validate the assay designs, we tested them against a comprehensive set of 87 positive and negative Prunus samples independently analyzed by high throughput sequencing. As a result, all the real-time RT-PCR assays described herein successfully detected the different viruses and their corresponding isolates. To further validate the new and updated assays a Prunus germplasm collection was surveyed. The sensitive and reliable detection methods described here will be used for the large-scale pathogen testing required to maintain the highest quality nursery stock.


2011 ◽  
Vol 403-408 ◽  
pp. 3797-3804
Author(s):  
Ji Lin He ◽  
Zheng Yuan ◽  
Qing Hua He

Based on the most prosperous System on Chip (SOC) in the field of microelectronics, the open and real-time robot controller was analyzed, the application and development platform was built. By means of representative evaluation index, cohesion and coupling, the modularized design and the open architecture of robot controller were implemented. It is proved that the average distance between the same modules is short, and therefore the system is better cohesive. And the average distance between different modules is long, and therefore less coupled. Consequently, the whole system is excellent in openness. At the same time, the real-time schedule of controller tasks is analyzed from theory and experiment. It is proved that the controller based on SOC is excellent in real-time performance. The experiment showed that SOC-based robot controller is highly modularized, the parameters is clear, the architecture is easily implemented and revised, and therefore is adaptive to different controlling requirement and module building.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2019 ◽  
pp. 60-66
Author(s):  
Viet Quynh Tram Ngo ◽  
Thi Ti Na Nguyen ◽  
Hoang Bach Nguyen ◽  
Thi Tuyet Ngoc Tran ◽  
Thi Nam Lien Nguyen ◽  
...  

Introduction: Bacterial meningitis is an acute central nervous infection with high mortality or permanent neurological sequelae if remained undiagnosed. However, traditional diagnostic methods for bacterial meningitis pose challenge in prompt and precise identification of causative agents. Aims: The present study will therefore aim to set up in-house PCR assays for diagnosis of six pathogens causing the disease including H. influenzae type b, S. pneumoniae, N. meningitidis, S. suis serotype 2, E. coli and S. aureus. Methods: inhouse PCR assays for detecting six above-mentioned bacteria were optimized after specific pairs of primers and probes collected from the reliable literature resources and then were performed for cerebrospinal fluid (CSF) samples from patients with suspected meningitis in Hue Hospitals. Results: The set of four PCR assays was developed including a multiplex real-time PCR for S. suis serotype 2, H. influenzae type b and N. meningitides; three monoplex real-time PCRs for E. coli, S. aureus and S. pneumoniae. Application of the in-house PCRs for 116 CSF samples, the results indicated that 48 (39.7%) cases were positive with S. suis serotype 2; one case was positive with H. influenzae type b; 4 cases were positive with E. coli; pneumococcal meningitis were 19 (16.4%) cases, meningitis with S. aureus and N. meningitidis were not observed in any CSF samples in this study. Conclusion: our in-house real-time PCR assays are rapid, sensitive and specific tools for routine diagnosis to detect six mentioned above meningitis etiological agents. Key words: Bacterial meningitis, etiological agents, multiplex real-time PCR


Sign in / Sign up

Export Citation Format

Share Document