Methods For A Systematic, Comprehensive Search for Fast, Heavy Scintillator Materials

1994 ◽  
Vol 348 ◽  
Author(s):  
S. E. Derenzo ◽  
W. W. Moses ◽  
M. J. Weber ◽  
A. C. West

ABSTRACTOver the years a number of scintillator materials have been developed for a wide variety of nuclear detection applications in industry, high energy physics, and medical instrumentation. To expand the list of useful scintillators, we are pursuing the following systematic, comprehensive search: (1) select materials with good gamma-ray interaction properties from the 200,000 data set NIST crystal diffraction file, (2) synthesize samples (doped and undoped) in powdered or single crystal form, (3) test the samples using sub-nanosecond pulsed x-rays to measure important scintillation properties such as rise times, decay times, emission wavelengths, and light output, (4) prepare large, high quality crystals of the most promising candidates, and (5) test the crystals as gamma-ray detectors in representative configurations. An important parallel effort is the computation of electronic energy levels of activators and the band structure of intrinsic and host crystals to aid in the materials selection process.

2018 ◽  
Vol 620 ◽  
pp. A181 ◽  
Author(s):  
M. L. Ahnen ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
C. Arcaro ◽  
A. Babić ◽  
...  

Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of ∼0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was ∼3 CU, and the peak of the high-energy spectral component was found to be at ∼2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices < 2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance < 3σ) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


In this chapter a comparison between various designs of micropattern detectors is given, describing their specific advantages and disadvantages, which finally determines the fields of their applications. It is shown that at low counting rates the maximum achievable gas gain is determined by the Raether limit, which is about 106-107 electrons, depending on the design. At high counting rates, the maximum achievable gain additionally drops due to the contribution of several other effects (e.g. avalanches overlapping in space and time). Typically, micropattern detectors have a position resolution of ~30 µm, energy resolution of ~ 20% FWHM for 6 keV X-rays, and a time resolutions of ~1 ns. Some advanced designs offer even better characteristics. The diversity of micropattern detectors makes them attractive for many applications. For example, in measurements requiring simultaneously excellent time and position resolutions, mutigap multistrip detectors can be used in high energy physics applications, and hole-type structures are advantageous for the detection of visible photons. In some commercial applications, where reliability and robustness are important, spark protected detectors with resistive electrodes could be useful.


1996 ◽  
Vol 169 ◽  
pp. 533-549
Author(s):  
Charles J. Lada

We now stand at the threshold of the 21st century having witnessed perhaps the greatest era of astronomical discovery in the history of mankind. During the twentieth century the subject of astronomy was revolutionized and completely transformed by technology and physics. Advances in technology that produced radio astronomy, infrared astronomy, UV, X and γ ray astronomy, large telescopes on the ground, in balloons, aircraft and space coupled with advances in nuclear, atomic and high energy physics forever changed the way in which the universe is viewed. Indeed, it is altogether likely that future historians of science will consider the twentieth century as the Golden Age of observational astronomy. As a measure of how far we have come in the last 100 years, recall that at the turn of this century the nature of spiral nebulae and of the Milky Way itself as an island universe were not yet revealed. The expansion of the universe and the microwave background were not yet discovered and exotic objects such as quasars, pulsars, gamma-ray bursters and black holes were not even envisioned by the most imaginative authors of science fiction. The interstellar medium, with its giant molecular clouds, magnetic fields and obscuring dust was unknown. Not even the nature of stars, these most fundamental objects of the astronomical universe, was understood.


1986 ◽  
Vol 89 ◽  
pp. 305-321
Author(s):  
Richard I. Epstein

AbstractThe power per logarithmic bandwidth in gamma-ray burst spectra generally increases rapidly with energy through the x-ray range and does not cut off sharply above a few MeV. This spectral form indicates that a very small fraction of the energy from a gamma-ray burst source is emitted at low energies or is reprocessed into x-rays and that the high-energy gamma rays are not destroyed by photon-photon interactions. The implications are that the emission mechanism for the gamma-ray bursts is not synchrotron radiation from electrons that lose most of their energy before being re-accelerated and that either the regions from which the gamma rays are emitted are large compared to the size of a neutron star or the emission is collimated and beamed away from the stellar surface.


1994 ◽  
Vol 142 ◽  
pp. 707-711
Author(s):  
H. Aurass ◽  
A. Hofmann ◽  
E. Rieger

AbstractVector magnetogram data and Hα pictures together with data published by Chupp et al. lead us to conjecture that in the presented case a contact between the rising two-ribbon flare current sheet and a coronal loop connecting two nearby plage regions initiates efficient high-energy γ-ray emission.Subject headings: Sun: corona — Sun: flares — Sun: X-rays, gamma rays


2003 ◽  
Vol 214 ◽  
pp. 70-83 ◽  
Author(s):  
T. P. Li

The energy range of hard X-rays is a key waveband to the study of high energy processes in celestial objects, but still remains poorly explored. In contrast to direct imaging methods used in the low energy X-ray and high energy gamma-ray bands, currently imaging in the hard X-ray band is mainly achieved through various modulation techniques. A new inversion technique, the direct demodulation method, has been developed since early 90s. with this technique, wide field and high resolution images can be derived from scanning data of a simple collimated detector. The feasibility of this technique has been confirmed by experiment, balloon-borne observation and analyzing simulated and real astronomical data. Based the development of methodology and instrumentation, a high energy astrophysics mission – Hard X-ray Modulation Telescope (HXMT) has been proposed and selected in China for a four-year Phase-A study. The main scientific objectives are a full-sky hard X-ray (20–200 keV) imaging survey and high signal-to-noise ratio timing studies of high energy sources.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
He Li-xia ◽  
Hao Xiao-yong ◽  
He Gao-kui

Thallium bromide (TlBr) is a compound semiconductor material, which can be used for X-ray and gamma-ray detectors and can be used at room temperature. It has excellent physical properties, high atomic number and density, wide bandgap (B = 2.68 eV), and low ionization energy. Compared with other X-ray and gamma-ray detection materials, TlBr devices have high detection efficiency and excellent energy resolution performance. So TlBr is suitable for housing in small tubes or shells, and it can be widely used in nuclear material measurement, safeguards verification, national security, space high-energy physics research, and other fields. Based on the fabrication of TlBr prototype detector, this paper focuses on the device fabrication and signal acquisition technology. Gamma-ray spectrum measurements and performance tests are carried out with AM-241 radioactive source. The results show that the special photoelectric peak of 59.5 keV is clearly visible, and the optimal resolution is 4.15 keV (7%).


2014 ◽  
Vol 03 (02) ◽  
pp. 1440008 ◽  
Author(s):  
M. Beilicke ◽  
F. Kislat ◽  
A. Zajczyk ◽  
Q. Guo ◽  
R. Endsley ◽  
...  

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X-ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCμS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a Cadmium Zinc Telluride (CZT) detector assembly to measure the polarization of 20–80 keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ≃80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2–100 keV energy band.


Sign in / Sign up

Export Citation Format

Share Document